Position sensitive x-ray detectors applied to Compton polarimetry of hard x-ray radiation

Günter Weber^{1,2}

H. Bräuning¹, S. Hess^{1,3}, U. Spillmann¹, A. Surzhykov², S. Fritzsche¹, R. Märtin^{1,2}, S. Trotsenko^{1,4}, D. Thorn⁵, D. Winters¹ and Th. Stöhlker^{1,2,4}

- ¹ Gesellschaft für Schwerionenforschung, 64291 Darmstadt, Germany
- ² Universität Heidelberg, 69120 Heidelberg, Germany
- ³ Universität Frankfurt, 60235 Frankfurt, Germany
- ⁴ Helmholtz-Institut Jena, 07743 Jena, Germany
- ⁵ Extreme Matter Institute, 64291 Darmstadt, Germany

Physikalisches Institut

Outline of the Talk

- Introduction to Compton Polarimetry
- Recent measurements at the ESR storage ring
 - \rightarrow Radiative Electron Capture (REC)
 - \rightarrow Lyman- α_1 radiation
 - \rightarrow Elektron-Nucleus Bremsstrahlung
- Bremsstrahlung measurements at the polarized electron source SPIN at TU Darmstadt (very preliminary)
- Summary & Outlook

Where do we find polarized x-rays?

RR/REC process

Bremsstrahlung

X-ray scattering (Compton, Rayleigh)

Aligned atomic systems

Synchrotron radiation

Astronomy

General interest

Revealing subtle details of atomic dynamics and structure

(Lyman radiation in H-like systems)

Of special interest, if angular distribution is not accessible (EBIT, Astronomy)

Possible applications ?

(Ion beam spin diagnosis, Imaging, Material science)

But: Precise polarimetry studies in the hard x-ray regime are quite challenging.

Polarimetry Techniques

Klein-Nishina Equation for Compton Scattering:

60

120

90

Compton Polarimeter Setups

Compton Polarimeter Setups

Günter Weber

EMMI Workshop, GSI, 7. 6. 2010

GSİ

Position sensitive Si(Li) detector as a Compton Polarimeter

32x32 strips \rightarrow 1024 pixels

$64x64\ mm \rightarrow 4096\ mm^2\ active\ area$

Energy (2.5 keV FWHM) + Timing (100 ns) + 2D Position (2 mm) + Multihit Capability

Dedicated for efficient and precise polarization studies from 70 keV to a few 100 keV

From ϕ Distribution to Polarization

EMMI Workshop, GSI, 7. 6. 2010

The GSI Accelerator Facility

The ESR internal gas target

Gas Target (H₂, N₂, He, Ne, Ar, Xe)

EMMI Workshop, GSI, 7. 6. 2010

Measurements at the ESR storage ring

Polarization of the K-REC radiation

Radiative Recombination (RR) Radiative Electron Capture (REC)

In the non-relativistic approximation the REC radiation has dipole characteristics:

- $sin^2 \theta$ angular distribution
- 100% linear polarization

First REC polarization measurements

Recent K-REC polarization measurements

- □ **16 pixel detector** S. Tashenov *et al.*, PRL **97** (2006)
 - Si(Li) Polarimeter S. Hess, Phd thesis (2010)

A gain by a factor 3 to 5 in precision!

EMMI Workshop, GSI, 7. 6. 2010

Polarization of the Lyman- α_1 radiation in U⁹¹⁺

Study of Lyman-α₁ polarization in H-like, high-Z systems

Revealing details of the population mechanism

Alignment of the excited 2p_{3/2} state:

$$\mathcal{A}_2 = \frac{\sigma\left(\pm\frac{3}{2}\right) - \sigma\left(\pm\frac{1}{2}\right)}{\sigma\left(\pm\frac{3}{2}\right) + \sigma\left(\pm\frac{1}{2}\right)}$$

Ly- α_1 linear polarization:

$$P_{\rm L}(\theta) = \frac{-\frac{3}{2}\frac{\mathcal{A}_2}{2}\sin^2\theta}{1 + \frac{\mathcal{A}_2}{2}\left(1 - \frac{3}{2}\sin^2\theta\right)}$$

Taking into account E1-M2-interference:

$$P_{\rm L}(\theta) = \frac{-\frac{3}{2}\frac{\mathcal{A}_2}{2}\left(1 - \frac{2}{\sqrt{3}}\frac{\langle {\rm M}2\rangle}{\langle {\rm E}1\rangle}\right)\sin^2\theta}{1 + \frac{\mathcal{A}_2}{2}\left(1 + 2\sqrt{3}\frac{\langle {\rm M}2\rangle}{\langle {\rm E}1\rangle}\right)\left(1 - \frac{3}{2}\sin^2\theta\right)}$$

Lyman- α_1 Polarization of U⁹¹⁺

EMMI Workshop, GSI, 7. 6. 2010

A model independent estimation of the E1-M2 transition ratio

Observable	Equation	Experiment	Theory	
			only E1	E1 + M2
$P(58^{\circ})[\%]$	$-\frac{3}{2}\mathcal{A}_2/2\left(1-\frac{2}{\sqrt{3}}\alpha\right)\sin^2\theta$	$19,1\pm3,1$	21,7	19,7
$P(115^{\circ})[\%]$	$\frac{1+\mathcal{A}_2/2\left(1+2\sqrt{3}\alpha\right)\left(1-\frac{3}{2}\sin^2\theta\right)}{1-\frac{3}{2}\sin^2\theta}$	$23{,}6\pm1{,}4$	26,4	$23,\!6$
$\beta_{20}^{\mathrm{eff}}$	$\mathcal{A}_2/2\left(1+2\sqrt{3}\alpha\right)$	$-0,\!29\pm0,\!005$	0,226	0,288

Decoupling of the collision dynamics (alignment parameter A_2) and the atomic structure (amplitude ratio $\alpha = M2/E1$) leads to a model independent estimation of both values.

Alignmentparan	neter \mathcal{A}_2	Amplitude ratio	Amplitude ratio $\alpha = \langle M2 \rangle / \langle E1 \rangle$	
Experiment	Theory	Experiment	Theory	
$-0,450 \pm 0,017$	-0,452	$0,\!083\pm0,\!014$	0,080	

-> Precise estimation of the E1-M2 transition ratio!

Polarization of Electron Bremsstrahlung

First Bremsstrahlung polarization study with inverse kinematics

Next step:

G. Weber, unpublished

Bremsstrahlung polarimetry + electron spectroscopy -> correlation study

Measurements at the polarized electron source SPIN at TU, Darmstadt

Linear Bremsstrahlung polarization measurements (unpolarized electrons)

Bremsstrahlung

Linear Polarization

No corrections for systematic effects (electron scattering, polarimeter efficiency, etc.) done yet.

R. Märtin, unpublished

The effect of spin polarized collision systems on Bremsstrahlung polarization

EMMI Workshop, GSI, 7. 6. 2010

Summary & Outlook

- ✓ Effifcient and precise Compton polarimeters are available (only small systematic corrections needed)
- ✓ Photon energies from about 70 keV to several 100 keV
- Experiments have already revisited a variety of radiative processes with respect to linear polarization (e.g. REC, Lyman, Bremsstrahlung)

Future plans:

- ✓ Studies of scattered x-rays at DESY
- ✓ Photon-photon and photon-electron correlations
- ✓ Measurements at EBIS/T facilities

Thank you for your attention!

