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X-Ray Scattering as a Diagnostics - Fit Data to Theory

Forward scattering geometry - small k

Glenzer et al. PRL (2007)

Information obtained

Electron density:
from the position of the
plasmon peak

Ionisation degree:
from the ratio of the electron
to and ion feature

Warning: experimental points
have been fit to existing/simple
theory and might match other
theories as well!
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X-Ray Scattering – Diagnostics & Theory Test Problem

Light scattered from strongly coupled, partially ionized plasmas

P(θ, ω) ∼ S tot

ee (k, ω) = |fi(k) + q(k)|2 Sii(k, ω) + Zf S
0
ee(k, ω)

+Zb

∫

dω′ S̃ce(k, ω − ω′)Ss(k, ω′)

Chihara, 1987, 2000

1st term: Ion feature (electrons co-moving with the ions)

Static approximation possible: Sii(k, ω) ∼ Sii(k)δ(ω)

Weak coupling treatment (RPA) fails; strong correlations important!

Needed: 1 Bound electron density – ion form factor f (k)

2 Electron density in the screening cloud q(k)

3 Ion structure factor Sii(k)

Term yields: ionization degree Z , (ion) temperature Ti
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dω′ S̃ce(k, ω − ω′)Ss(k, ω′)

Chihara, 1987, 2000

1st term: Ion feature (electrons co-moving with the ions)

2nd term: Electron feature (free electrons)

Dynamic treatment needed (electron modes - plasmons)

Weak coupling treatment (RPA) appropriate (+ weak collisions)

Needed: response function for degenerate electron gas χ(k, ω)

Term yields: electron density ne , (electron) temperature Te

3rd term: Inelastic Raman scattering (unimportant for light elements)
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often unimportant
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1st term: Ion feature (electrons co-moving with the ions)

2nd term: Electron feature (free electrons)

Dynamic treatment needed (electron modes - plasmons)

Weak coupling treatment (RPA) appropriate (+ weak collisions)

Needed: response function for degenerate electron gas χ(k, ω)

Term yields: electron density ne , (electron) temperature Te

3rd term: Inelastic Raman scattering (unimportant for light elements)

mainly described in RPA

often unimportant

Sii(k), f(k) and q(k) ???
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Full Quantum Simulations for the Electron/Ion Structure

The goal is to include

Full quantum mechanics (diffractions/exchange) for the electrons

All correlations in the target (especially ionic structure)

Method applied: Density Functional Theory + MD (DFT-MD)

1 Solve Kohn-Sham equations for given ion positions
(effective Schrödinger equation ⇒ states and energy levels)

2 Populate energy levels according to Fermi-distribution

3 Calculate forces (i-i and i-e) on ions ⇒ Move ions; ⇒ Start again!

4 After initial time, equilibrium properties follow: gii (r), gei (r), p, Ecor

Problems:

Very long run times for DFT-MD (weeks) ⇒ Switch to HNC or MC ?

Box size and noise make Fourier transformation hard
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Ionic Structure: HNC versus DFT-MD (Aluminum)
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Warm Aluminium with:

ni = 2.7 × 1022 cm−3

T = 1.2 × 104 K

(isochorically heated)

Wünsch et al., PRE (2009)

⇒ good agreement with Yukawa+SSR model

Yukawa model: linearly screened interaction potential (deg. electrons)
Full shells results additional repulsion at small distances ∼ 1/r4 (SRR part)
Y-SRR Model works for heavier elements as well !
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Experimental Verification: Ionic Structure in Lithium

Structure in compressed Lithium
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Static structure factor for a lithium plasma with
ni = 5.2 × 1022 cm−3, T = 4.5 eV, Z̄ = 1.35.

Garćıa Saiz et al., Nature Physics (2009)

Insights gained:

Good agreement:
DFT-MD simulations
and experiments

Good agreement:
linearly screened HNC
and experiments

HNC with quantum
potentials yields too
strongly coupled ions
(screening too weak)
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Experimental Verification: Ionic Feature for Beryllium

Weight of the Ion Feature in Isochorically Heated Beryllium
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Exp. data: Glenzer et al., PRL (2003/2007)

Ion peak using HNC

WR(k) = |fi (k) + q(k)|2 Sii(k)

plasma parameters:

ni = 1.23 × 1023 cm−3,

T = 12 eV, Z = 2

⇒ Agreement of KK–Exp. is mainly due to compensating errors!

⇒ Best agreement with experiments is achieved for q(k) = 0
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Bound State Structure in Beryllium from DFT-MD
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Warm Beryllium with:

ni = 1.23 × 1023 cm−3

T = 1.39 × 105 K

(isochorically heated)

⇒ Many bands needed!
energy cutoff >4000 eV

⇒ Core structure resolved!
⇒ Charge state of Z =2

⇒ Core structure yield valuable information:

Electron densities for small distances unchanged from isolated ions

No hint of further ionization beyond Z =2

Screening cloud hard to diagnose as signal dominated by 1s electrons
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Warm Beryllium with:

ni = 1.23 × 1023 cm−3

T = 1.39 × 105 K

(isochorically heated)

⇒ Many bands needed!
energy cutoff >4000 eV

⇒ Core structure resolved!
⇒ Charge state of Z =2

⇒ Core structure yield valuable information:

Electron densities for small distances unchanged from isolated ions

No hint of further ionization beyond Z =2

Screening cloud hard to diagnose as signal dominated by 1s electrons

⇒ X-ray scattering signal at small k not well described: q(k)?
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Screening Function q(k) for Partially Ionized Matter

New physics to take into account:

Debye/Thomas-Fermi screening ignores effect of bound electrons,
but uses effective charge only (Coulomb interactions on all scales!)

Bound electrons block real space around ionic cores

⇒ Successful concept from solid state physics: empty core potentials
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Coulomb potential
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∼

[
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]

DFT pseudo-potenial
for comparison

⇒ Use these pseudo-potenials in linear response theory to obtain q(k)!
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Screening Function q(k) for Partially Ionized Matter

Effect of different pseudo-potenials on the screening function:

General solution:
q(k) = χRPA

e (k)Vei (k)

hard cutoff potential:

q(k) = Z
κ2

e

k2+κ2
e

cos(krcut)

(κe inverse screening length)

other potentials:
numerical results only
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⇒ Large changes due to pseudo-potenitals possible for intermediate k

⇒ Even negative q(k) are possible, but correct k → 0 behavior
⇒ Effect depends strongly on value of cut-off radius rcut

D.O. Gericke (University of Warwick) XRTS as Diagnostics for WDM GSI-Darmstadt: 7 June, 2010 11 / 15



Screening Function q(k) for Partially Ionized Matter

Effect of different pseudo-potenials on the screening function:

General solution:
q(k) = χRPA

e (k)Vei (k)

hard cutoff potential:

q(k) = Z
κ2

e

k2+κ2
e

cos(krcut)

(κe inverse screening length)

other potentials:
numerical results only

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

q
(k

)
0 1 2 3 4

k [aB
-1

]

rcut = 0.5Å
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Screening Function q(k) for Partially Ionized Matter

Effect of pseudo-potenials on the weight of the Rayleigh peak:
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Gericke et al. (submitted)

Rayleigh peak defined by:

WR(k) = |fi (k) + q(k)|2 Sii(k)

plasma parameters:
ni = 1.23 × 1023 cm−3,

T = 12 eV, Z = 2

⇒ Large modulations due to pseudo-potenitals for intermediate k

⇒ Trend towards experimental results, but no qualitative agreement
⇒ Different k-behavior than in experiments found (no linear increase);
⇒ experimental results are still best described by q(k) = 0 curve
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Probing Melting of Carbon by X-ray Thomson Scattering

Setup of an ion beam-driven melting experiment

Probing the ion peak
+ incoherent scattering

• Heating by laser ions
• Heating is isochorically
• Melting possible, but

carbon has no fluid phase
under normal pressure

A. Pelka et al. (submitted)

⇒ Inertial confinement of high pressure liquid
⇒ XRTS can be used as a probe for phase transition
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Probing Melting of Carbon by X-ray Thomson Scattering

The following 4 slides have been deliberately removed
to allow for on-line posting of the talk.

Apologies for inconveniences this removal might cause.

Dirk Gericke
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Thank you!
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