

# Heavy lons at GSI: An overview of research activities at GSI

# Th. Kühl, GSI Darmstadt







# Helmholtz Alliance: EMMI

HELMHOLTZ

GSI

#### **Extremes of Density and Temperature: Cosmic Matter in the Laboratory**



## 12 Partners and 23 Associated Partners worldwide

# The Ion Part of PNI

#### 

## **Research Focus: Matter under Extreme Conditions**

Highest Charge States Relativistic Energies High Intensities High Charge at Low Velocity Extreme Static Fields Extreme Dynamical Fields and Ultrashort Pulses Very High Energy Densities and Pressures Large Energy Deposition

# **Contributions to Solving Grand Challenges**



# **Ion Beam Accelerator Facility**



# **The GSI Accelerator Facility for Heavy Ions**



# **Research with Heavy Ions at GSI**

#### Atomic QED in non-perturbative regime Physics Correlated many-body dynamics for atoms and ions Precision determination of fundamental constants Influence of atomic structure on nuclear decay properties

Plasma Physics

Materials Science

EMMI X-Rav Workshop, June 7-8, 2010

HELMHOLTZ

GSI

# **Experiment Facilities for Atomic Physics**



# **Atomic Physics in Extremly Strong Coulomb Fields**



# **Atomic Physics in Extremly Strong Coulomb Fields**





 $\Delta E = \alpha / \pi (\alpha Z)^4 F(\alpha Z) m_c^2$ 

HELMHOLTZ

GSI

# theory of bound-state QED still valid at high-Z ?

1s, 2s Lamb Shift

g-factor of bound electrons

hyperfine structure

precision mass measurements

super-critical fields

# Bound-State QED: 1s Lamb Shift at High-Z

HELMHOLTZ

GST



# **Production, Storage, and Cooling of HCI**



#### **Cooling in traps**

resistive cooling evaporative cooling laser cooling electron cooling





#### **Cooling in Storage Rings**

electron cooling stochastic cooling laser cooling

#### Storing and Cooling ist the key for precision

# **The Experiment Storage Ring ESR**



#### Single-Ion Detection



Key features / instrumentation

- Stochastic and electron cooling
- Relativistic ions (typically 400 MeV/u)
- Deceleration (down to 4 MeV/u)
- Schottky and TOF mass and lifetime spectroscopy (single ion sensitivity)
- Internal gas jet target
- Superfluid targets
- Position sensitive x-ray and particle detectors
- Crystal spectrometer
- Microcalorimeter detectors
- Collinear laser spectroscopy.
- Electron spectrometer
- Recoil ion spectrometer

# X-Ray Spectroscopy at the ESR



# Test of Quantum Electrodynamics (1s-LS)



# Quantum Electrodynamical Effects in Extreme Electromagnetic Fields



# HITRAP – Trap facility for heavy highly charged ions



# g-Factor of the Bound Electron



## Bound State QED and Fundamental Constants: The New HITRAP Facility at the ESR



# Ion-surface interaction

#### questions to be addressed:

- hollow atom spectroscopy
- high-spin states via electron capture from magnetised surfaces
- electron dynamics at surfaces and thin films
- trampoline effect existent above a critical charge state?
- surface lithography by means of HCI impact?

Exp. H2, groups: R. Hoekstra, KVI Groningen A. Warczak, Krakow J. Burgdörfer, Vienna



# HITRAP – IH Structure deceleration from 4 to 0.5 MeV/u



# **HITRAP** low beam energy section



HELMHOLTZ



vertical beamline (<10<sup>-10</sup> mbar)

Cooler trap (<10<sup>-13</sup> mbar)

LEBT (two differential pumping stages)



# The HITRAP cooler trap



*Questions* space charge and frequency shifts cooling times survival probability potential shaping => nested traps for 10<sup>5</sup> ions, 10<sup>10</sup> e<sup>-</sup>

HELMHOLTZ

GSI

- e- cooling to 10 eV
- resistive cooling to 4 K
- vacuum better than 10<sup>-13</sup> mbar





#### **Resonant Coherent Excitation Experiment on Highly Charged Uranium**

high precision spectroscopy of  $1s^22s_{1/2}$ - $1s^22p_{3/2}$  transitions of Li-like U at 193 MeV/u.











#### Resolution: $\triangle E/E \approx 10^{-3}$

determined by:

- momentum spread of SIS beam 6-7 10<sup>-4</sup>
- beam divergence

Next experiment will employ ESR

 $\rightarrow$  two orders of magnitude better resolution expected

International Collaboration:

- Japan (Riken, Tokyo Univ.)
- Germany (GSI)
- France (Lyon)



# **Research with Heavy Ions at GSI**

| Atomic<br>Physics    | QED in the non-perturbative regime<br>Correlated multi-body dynamics for atoms and ions<br>Precision determination of fundamental constants<br>Influence of the atomic structure on nuclear decay properties |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Plasma<br>Physics    | Interaction of ions and photons with plasmas<br>Equation of state, phase transitions, transport phenomena<br>Matter under high pressure<br>Intense Laser (PHELIX): plasma production, particle acceleratior  |
| Materials<br>Science |                                                                                                                                                                                                              |

HELMHOLTZ ASSOCIATION GSİ

## **Experiment Facilities for Plasma Physics**



# **1000 Shots of PHELIX delivered**

#### Total of 16 Experimental Campaigns :

- 5 x Ion stopping @ Z6 GSI, TU Darmstadt, Sarov
- 3 x Proton acceleration TU Darmstadt, GSI, Rutherford, Strathclyde
- 3 x Kα x-ray production Bordeaux, Moscow, GSI
- 3 x X-ray lasers
  - Paris-Sud, GSI, Jena
- 2 x Relativistic electron transport Strathclyde, Rutherford, GSI, TU Darmstadt

# Z6 – a unique facility offering ion and laser beams for combined experiments



## Z6: combined laser & ion beam experiments

HELMHOLTZ ASSOCIATION



- 1. Ion stopping in ideal and non-ideal plasma
  - Increased energy transfer from the projectile to free plasma electrons compared to bound electrons in cold matter
- 2. Charge exchange with free plasma electrons
  - Increased projectile charge state due to suppression of the capture cross section in plasma ( $\sigma_{capt}$ (bound e<sup>-</sup>) >>  $\sigma_{capt}$  (free e<sup>-</sup>))
- 3. Ion acceleration by an intense laser beam
  - Injection of a laser accelerated proton beam into conventional ion accelerator structure



Experiments worldwide only feasible at GSI due to the combination of intense ion beams from UNILAC and a powerful laser beam from PHELIX

# Interaction of ions with plasma targets generated by the PHELIX laser



We have developed the plasma and ion beam diagnostics to precisely detect the physics involved in ion - plasma interaction!

GSI

HELMHOLTZ

P

T. Heßling

shot 1 - 83,4 J

shot 2 - 80 J
laser profile shot 2
shot 3 - 96,4 J

30

40

laser profile shot 1

laser profile shot 3

50

60

## Hohlraum target design and experiments



# Experiments with close to 0.5 Petawatt in the laser hall

- The 90-degree massive metallic mirror is machined to ~1 micron accuracy (PV),
- The surface roughness and machining precision have to the balanced to get the best trade-off between scattering losses and wavefront error.

Mirror in its Holder



**Back View** 





HELMHOLTZ

G S II

# Currently proton acceleration is being evaluated

 Laser accelerated ions are of interest for diagnostic purposes, but also as a complementary path to the traditional accelerators



# **Focusing of Laser Accelrated Protons**

HELMHOLTZ



#### Stack located 405 mm from the target



#### **Converging proton beams**

Progress in particle acceleration (Courtesy of K. Harres) Up to 14 MeV protons were collimated using a coil developed at FZD

A program to combine laser acceleration with standard accelerator components is started Laser-generated K-alpha sources have a large application potential in High Energy Density Science experiments



HELMHOLTZ

GSI

#### Ch. Labaune, P. McKenna, P. Neumayer, O. Rosmej, et al



- We are using PHELIX to pump X-ray laser with Ni-like Samarium and recently Ni-like Dysprosium (photon energy > 200 eV)
  - We have developed an innovative two pulse scheme\* to create transient collisionaly excited (TCE) plasma X-ray laser (DGRIP)





HELMHOLTZ

GSI

Amplification of soft x-rays in the regime of 40 eV and about 260 eV with a small signal gain of up to 8 x 10<sup>3</sup> was observed using the PHELIX front-end. The parametric amplification of high-order harmonics as a seed is explained by a simple model of energy transfer into the x-ray field.



# Plasma physics experimental area HHT











# **Plasma Physics with Intense Photon and Ion Beams**



HELMHOLTZ

GSI

# **Research with Heavy Ions at GSI**

# Atomic<br/>PhysicsQED in non-perturbative regime<br/>Correlated multi-body dynamics for atoms and ions<br/>Precision determination of fundamental constants<br/>Influence of atomic structure on nuclear decay propertiesPlasma<br/>PhysicsInteraction of ions and photons with plasmas<br/>Equation of state, phase transitions, transport phenomena<br/>Matter under high pressure<br/>Intense Laser (PHELIX): plasma production, particle acceleration

HELMHOLTZ

651

# Materials Science

Material modifications Writing with single ions Ion-track nanotechnology High-pressure irradiations

## **Experiment Facilities for Materials Research**





# **Motivation in Geosciences**



# **Future Developments and Perspectives**

HELMHOLTZ

GST

# FAR Atomic and Plasma Physics





FAIR

**Atomic Physics:** The ESR and HITRAP are worldwide unique facilities for probing our understanding of matter in the extreme electromagnetic field regime.

HELMHOLTZ

**Plasma Physics:** Ion beams can produce well defined homogeneous samples of dense plasma relevant for fundamental studies such as testing models of planetary and stellar structure.

Materials Research: The GSI ion beams are particularly suitable for radiation hardness tests and application-oriented nanotechnology.

**Opportunities and Challenges:** Unique Facilities and Instrumentation for Heavy Ion and Anti-Proton Research