

Matter in Extreme Conditions (MEC) Instrument in SLAC

Hae Ja Lee

Outline

Introduction

Novel behavior in extreme condition LCLS in SLAC MEC Instrument Goal / Requirement

MEC Instrument : x-ray transport and laser system MEC science and target diagnostics

X-ray Scattering Spectrometer X-ray Emission Spectroscopy XUV Spectroscopy FDI VISAR

Summary

Parameters of MEC Instrument

Novel behavior in material under pressure

Narygina et al. PRB (2009)

Colossal enhancement of piezoelectricity under pressure ...(Mg,Fe)SiO₃ >120 GPa, Ultrahigh pressure behavior of CO₂, Carbon Polymorphism X-ray Raman, Mao, science 2004: conversion of half π bond to σ bond Evolution of K-edge position with pressure for several iron oxides

More extreme conditions, new diagnostics, theory & experiment, stability/metastability

Molecules are stable to 300 GPa, low T , > 400 GPa : combined superfluidity and superconductivity

Matter in Extreme Conditions

- There have been growing interest in the material under extreme environments
- Extreme environments: pressure, temperature, flux, stress, strain, magnetic field, ...
- In Nature, phenomena in harsh condition happen around us no matter what we recognize
- We often intentionally create similar extreme environment

Potential Impact of understanding WDM

Understanding the nature of WDM advances our understanding of the universe and enables important applications

Understanding the Universe:

Start creation and evolution Planetary physics Advances use-inspired research Inertial fusion Material damage, manufacturing, functioning and controlling Explore new materials

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing 3-km linac 1.5-15 Å Injector (35°) (14-4.3 GeV) at 2-km point

Existing 1/3 Linac (1 km) (with modifications)

Xaraý Transport Line (200 m)

- Undulator (130 m) - Near Experiment Hall

Argonne

800 eV- 2 keV

AMO

Operating with users

Matter Exposed to Ultra Intense X-ray Pulses Ionic Charge States of Atoms, Molecules and Clusters Electron Energy Measurements of Highly Excited States X-ray Emission Measurements of Highly Excited States Ultrafast Dynamics of Simple Systems:

Atoms, Molecules & Clusters Two-Photon Excitation/Ionization of Atoms & Molecules X-ray Ionization of Adiabatically Aligned Molecules

SXR

Commissioning, Operate with users in July

Pump-Probe Ultrafast Chemistry Clusters as New Materials Magnetic Imaging **Correlated Materials** Coherent Imaging

XPP

Commissioning, Operate in October

Condensed Phase Photochemistry Charge Transfer Reactions Photosynthetic Reactions/Photovoltaics Lattice Dynamics and Phase Transitions Order/Disorder Metal/Insulator

XCS

Goal: Time-resolved observation of coherent diffraction patterns using LCLS coherent hard x-ray (6-25keV)

Coherent preservation of x-ray optics Detector with small pixel size/large sampledetector distance

Nanoscale/sub ns dynamics

User operation start planned for October 2011

EMMI Workshop June 7-9, 2010

CXI

Goal: Perform imaging of single particles at highest spatial resolution achievable using single LCLS pulses . Image biological nanoparticles beyond the classical damage limit .

Particle injector

User operation start planned for 2011

MEC

High Pressure Shock phenomena Warm Dense Matter High Energy Density Matter

User operation start planned for 2013

MEC Instrument Goals/Requirements

Goals

Deliver capabilities for the creation and measurement of warm dense matter or high energy density matter.

Primary Aspect of the Instrument (SP-391-001-89)

- LCLS beam : Unique capability to create, probe and selectively pump HED states
- Optical laser : Create HED states by irradiation in several ways
 Provide diagnostics capability
- Target Diagnostic : Provide the measurement capability
 - High pressure, Warm dense matter, High energy density matter

Key Performance Parameters

- X-ray transport system: 4-20 keV energy range
 - Using the fundamental and third harmonic, 0.1% energy resolution
- MEC Laser system: short pulse and long pulse laser system
 - 35fs/150mJ/800nm, 2-20ns/2x25J/527nm
- Target Diagnostics:
 - Shock velocity (5x10⁴-5x10⁶ccm/s), surface motion (4Å resolution)
 - Temperature (0.1-2000 eV)

LCLS source for MEC instrument

MEC instruement provides capabilities to create and diagnose matter in extreme conditions in various experimental geometries.

X-ray Optics System Description

- The x-ray transport is a vacuum system designed to deliver the x-ray FEL beam to a target chamber
- Diagnostics and optics can be used to tailor the x-ray beam in size and intensity as it reaches the target chamber

X-ray Optics description

Item	Purpose	Specification	
Deflecting Mirror	Separate MEC beam from central line	<i>Reflect the both 1st and 3rd harmonic of the LCLS beam</i>	
Vacuum transport	Vacuum for transport of x- ray beam through XRT	<i>Vacuum below 10⁻⁵ torr</i>	
Intensity-pos monitor	Normalization of x-ray energy fluctuations	Relative accuracy of better than 1%	
Harmonic rejection mirrors	<i>Eliminate 3rd harmonic of LCLS beam</i>	<i>Reduce 3rd harmonic by a minimum of x 100 over the LCLS operating range</i>	
Be focusing lens	<i>Provide experiment appropriate LCLS beam on target</i>	Waist less than 1 micron, off waist 50 micron beam size, energy range 4-25 keV	
Target Chamber	Vacuum environment for target, lasers, diagnostics	<i>Minimum pressure: 1x10⁻⁵ torr</i>	

MEC Laser Systems

Item	Purpose	Specifications
Short Pulse laser System	TW-class short pulse laser for target driver and short pulse diagnostics	Pulsewidth: ≤40 fs Energy: ≥150 mJ per pulse Repetition Rate: 10 Hz Vacuum optical transport to target chamber
Long Pulse Laser System	Multi-Joule high-intensity shock driver for target interactions	Wavelength: 527 nm Pulsewidth: Variable 2-20 ns Variable Temporal Pulse Shape Energy: ≥ 50J per pulse Repetition Rate: 1-shot per 10 min Enclosed optical transport to target chamber

Science Team

Target Diagnostics Concept and Specifications developed with the science team and through a workshop.

The MEC science team

- Richard W. Lee, LLNL (MEC Team Leader)
- Jerry B. Hastings, SLAC
- Bob Nagler, STFC, UK

MEC Science with diagnostics

Research category	Source beam	Interesting phenomena/physics properties	Measurement tools
Warm Dense Matter (WDM)	LCLS	Creation of WDM : Heated uniformly and rapidly. Release before hydrodynamic expansion	FDI (surface expansion) XUV, X-ray spectroscopy (emission line) Diode (Flux change)
	Optical laser	Compression, electron transport	X-ray Thomson scattering (T _e , n _e , Z) XUV, X-ray spectroscopy (emission line) VISAR (surface expansion)
High Energy Density Matter	Optical laser LCLS pumping	Redistribution of population by pumping within a transition. Low Density of Plasma, high temperature (T _e >100 eV)	XUV, X-ray spectroscopy (emission line) VISAR (surface motion during ns, EOS) FDI (reflectivity & phase change)
High Pressure	Optical laser	Shock compression Disorder: dislocation dynamics High strain rate phenomena, shear modulus under compression	VISAR (shock velocity, Pressure, EOS), X-ray Thomson scattering (T _e , n _e , Z) FDI (surface motion) Diffraction (lattice dislocation, strain)

- WDM or High Energy Density Matter by LCLS beam
 - WDM by LCLS beam
 - **B** Heated uniformly and rapidly: constant ρ (isochores), T_e<10 eV
 - Release before hydrodynamic expansion: constant entropy (isentropes)
 - Hot Dense Matter by LCLS pumping
 - Redistribution of population by pumping within a transition : emission line
 - Low density of plasma, high temperature (T_e>100 eV)

Measurement

- FDI : The isentropic expansion
- XUV or/and x-ray spectroscopy : Electron temperature, redistribution of population
- Diode detector : flux change in transmission, reflection or scattering geometry

- WDM or High Pressure generated by optical laser
 - WDM by Optical laser
 - Surface velocity

Measurement

VISAR : Shock velocity during nanosecond, equation of state

WDM or High Pressure generated by optical laser

High pressure by Optical laser

• Compression (n_e and T_e , Z)

X-ray scattering spectrometer : Electron temperature, density, collisionality

WDM or High Pressure generated by optical source

- VISAR : Shock velocity during nanosecond, equation of state
- X-ray scattering spectrometer : Electron temperature, density, collisionality

Target Diagnostics in hutch 6

Target Diagnostics provides capabilities to create and measure matter in extreme conditions in various geometries.

Target Diagnostics with target chamber SLACE

Target Diagnostics with target chamber SLACE

Target Stage

LCLS beam: ~ 500 µm without focusing, 0.5 µm with focusing Be lens at center

The MEC Target stage provides 6 degrees of freedom, x, y, z, pitch, yaw, and roll for target alignment.

```
X, Y: ±25 mm, Z: ±14 mm,
Min. incremental motion: 0.5µm, Max spped: 1 mm/s
```

X-ray Scattering Spectrometer

pump	probe	spot size of laser	spot size of Icls	target	target thickness	Detector
Long or short pulse beam	LCLS beam	100-400 μm	50 µm	polycrystalline, single crystal, and liquid jet	< a few 100 µm	Spectrometer + x-ray CCD

Compton and plasmon feature depending on k-vector change Measure electron density, temperature, and further ionization state of dense matter

Specification

X-ray Scattering Spectrometer

X-ray Emission Spectroscopy

beam	Minimum of spot size	target	target thickness	Detector
LCLS or optical laser pulse beam	0.5 µm	polycrystalline, single crystal, and thin foil	100 nm - bulk	CMOS x-ray detector

X-ray spectrum

EMMI Workshop

June 7-9, 2010

Measure K-shell x-ray emission lines and study charge state distribution

- The same geometry with x-ray scattering spectrometer:
- Curved crystal, Von Hamos geometry

- Specification :
 - X-ray Emission spectrometer Energy range: ADP (101)-1.2~13 keV Optimize 1.5 keV Energy window ~200 eV Energy resolution~ 0.4 eV
 - X-ray detector

the same detector with scattering detector

SLAC NATIONAL ACCELERATOR LABORATORY

X-ray Emission Spectroscopy

XUV Spectroscopy

Main Components: Toroidal mirror, Gratings, filters, x-ray CCD, manipulator, shielding Existing design (DESY, NRL)

beam	Minimum of spot size	target	target thickness	Detector
LCLS or optical laser pulse beam	0.5 µm	polycrystalline, single crystal, and thin foil	100 nm - bulk	X-ray CCD camera

XUV spectrum

Measure emission lines and study multiphoton ionization, charge state distribution

Specification

XUV spectrometer

Available range: 3-35 nm Spectral resolving power~ $\lambda/\Delta\lambda$ ~300 at 21 nm

X-ray CCD camera Readout frame rate: 1 to 10 Hz Pixel size: 13.5 µm Image area: 27.6x6.9 mm (2048x512)

XUV Spectroscopy

Fourier Domain Interferometer

Main components: short pulse laser probe, Mach-Zehnder Interferometer, Optical spectrometer, CCD camera Existing design (LLNL, LULI)

Time resolved measurement of reflectivity and phase shift Critical surface motion

Specifications

Time resolution : 40fs Spatial Resolution: better than 10um Dynamic range: 500:1 Sensitivity : better 1% of fringe (4Å resolution)

Fourier Domain Interferometer

EMMI Workshop June 7-9, 2010

nat Ja Let, natite Slac.stanford.edu

VISAR

Main components: Agilite 560, Optical streak camera, Mach-Zehnder Interferometer, relay and fiber optics Existing design (Omega)

Free Surface velocity of shocked or compressed targets, shock wave velocity, shock breakout timing

Specifications

1 Visar bed Line Visar Velocity/Fringe : 0.5 to 20 km/s/fringe Resolution: f/3 for 1mm field of view Field of view: 1-5mm Dynamic range: 500:1

VISAR

EMMI Workshop June 7-9, 2010

חמד שם בכב, וומבובב שslac.stanford.edu

MEC Target Diagnostic

Item	Purpose	Specification	
X-ray Thomson Spectrometer	Measure electron density and temperature	Spectral resolution of ∆E/E~3×10 ⁻³ at 8 keV	
XUV spectroscopy	Study electronic band structures	Spectral resolving power of λ/Δλ~300 at 21 nm	
X-ray Emission Spectroscopy	Measure x-ray emission line	Spectral resolving power of ∆E/E~1×10 ⁻³ at 1.5 keV	
<i>Fourier Domain Interferometer (FDI)</i>	Measure surface motion	Accurate to λ _Å /2000 for 800 nm probe	
VISAR	Measure shock velocity	Nanosecond time scale	
Diode detector	<i>Measure flux change of x-ray and optical beams</i>	Repetition rate of 120 Hz	
Alignment Diagnostics	Align and monitor position of sample, optics, and diagnostics	Spatial resolution ~ 10 μ m	
Target Stage	Accurately orient and move sample	<i>6 degrees of freedom in orientation</i>	

Project Description – Hutch Facilities

MEC Control area on mezzanine

Summary

- The unique strength of MEC instrument
 - LCLS beam : intense x-ray, short pulse, coherent, and tunable (4-20 keV)
 - MEC Laser system : 35fs/150mJ/800nm, 2-20ns/2x25J/527nm
 - Target Diagnostics : provide cutting edge research capabilities of warm dense matter, high energy density physics and high pressure

Shock velocity (5x10⁴-5x10⁶ccm/s), surface motion (4Å resolution) Temperature (0.1-2000 eV)

MEC Instrument Target Diagnostics are based on proven design developed at LLNL, LULI, LANL, NRL and DESY.

End of Presentation