

Hypernuclei Production in CBM at FAIR: A Feasibility Study

Ivan Kisel^{1,2,3}, Anton Lymanets¹, Iouri Vassiliev¹, Maksym Zyzak¹ (for the CBM collaboration)

¹ GSI, Darmstadt, Germany, ² FIAS, Frankfurt, Germany, ³ Goethe-Universität Frankfurt, Germany, ⁴ JINR, Dubna, Russia

Hypernuclei production at CBM experiment:

- Single and double hypernuclei
- Precise measurements of hypernuclei lifetime
- Measurement of branching ratios of hypernuclei
- Direct access to the hyperon-nucleon (YN) interaction through measurements of B_{Λ} in a hypernucleus
- "Hyperon puzzle" in the astrophysics: understanding of YN interaction is crucial for neutron star physics
- Search for strange matter (e.g., heavy multi-strange objects) **Advantages of CBM:**
- Highest production cross section for hypernuclei at CBM energies (yet no experimental data)

Theoretical models: SHM, DCM, UrQMD+Hydro

- Complex topology of decays can be easily identified in CBM and helps suppressing the background thanks to precise tracking and particle finding algorithm
- Reliable identification of produced hypersystems.
- Access to AA-hypernuclei: high interaction rates, optimal collision energies and clean identification

Experimental challenges at CBM

- future fixed-target heavy-ion • CBM experiment at FAIR, Darmstadt, Germany.
- 10⁵-10⁷ collisions per second.
- Up to 1000 charged particles/collision.
- Free streaming data.
- No hardware triggers (HLT only).
- On-line event reconstruction and selection is required in the first trigger level.

- On-line reconstruction at the online farm with 60000 CPU equivalent cores.
- High speed and efficiency of the reconstruction algorithms are required.
- The algorithms have to be highly parallelised and scalable.
- CBM event reconstruction: Kalman Filter and Cellular Automaton.

• AuAu, 10 AGeV, 5M central UrQMD events + thermal isotropic signal, TOF PID. • Background can be further reduced with additional dE/dx PID.

\mathbf{O} S **()**

- For ⁴_AHe background can be reduced selecting only primary hypernuclei.
- Further background reduction with additional dE/dx PID.
- For ${}^{5}_{\Lambda}$ He and ${}^{5}_{\Lambda\Lambda}$ H, background will be reduced selecting only primary hypernuclei.

Further improvements

 \checkmark

 $^{3}_{\Lambda}H \rightarrow ^{3}He\pi^{-}$

TOF + STS

CBM can perform dE/dx PID in two detectors: STS based on silicon strip detectors and TRD based on gaseous detectors. The expected resolution should be enough to separate 1 and 2charged particles and clean up ³He from proton contamination and ⁴He spectra from protons and deuterons.

• The studies of including dE/dx

Conventional method

Missing mass method

studied: $^{3}\Lambda H \rightarrow ^{3}He \pi$ dpπ ppnπ tπ⁰ ${}^4\Lambda H \rightarrow {}^4He \pi$ tpπ ddπ ³He n π ppnπ ${}^{4}\Lambda \text{He} \rightarrow {}^{3}\text{He} \text{ p} \pi$

Possible decays to be

dppπ pppnπ ⁴He π⁰ d d π⁰ tpπ⁰

3.1 m_{inv} {³He π ⁻} [GeV/c²] m_{inv} {³He π ⁻} [GeV/c²]

 $^{3}_{\Lambda}H \rightarrow ^{3}He\pi^{-}$

 $m_{inv} {}^{3}He\pi {}^{-} [GeV/c^{2}]$

3.1 are ongoing. • For better control over the systematic errors, all possible channels should be studied.

• The missing mass method for reconstruction of short-

• Originally developed for the reconstruction of Σ , Ξ , Ω

developed and added to the KF Particle Finder package.

hyperons, the method can be applied to the hypernuclei.

lived particles with a neutral daughter particle was

Conclusions

- CBM is perfectly suited for detection of hypernuclei thanks to PID precise and precise tracking.
- Algorithms developed for reconstruction hypernuclei with high efficiency and statistical significance.
- Observation of $\Lambda\Lambda$ -hypernuclei is possible given the optimal energy at 10⁷ s⁻¹ interaction rate
- \checkmark Missing mass method: measurement of more hypernuclei decay channels \rightarrow direct measurements of branching ratios + tools for the control over systematic errors **Plans:**
- \checkmark Improve daughter particle PID using dE/dx method
- \checkmark Add more decay channels
- ✓ Study systematic errors

Steinheimer et al., "Hypernuclei, dibaryon and antinuclei production in high energy avy ion collisions: Thermal production versus Coalescence," Phys. Lett. B 714 (2012) 85