
C
om

pr
es

se
d

B
ar

yo
ni

c
M

at
te

r e
xp

er
im

en
t a

t F
A

IR
TGenBase - general purpose

virtual database engine for HEP
Evgeny Lavrik1, for CBM Collaboration

1 Facility for Antiproton and Ion Research, Darmstadt, Germany

HTTPS	Thin	Clients

+

Production	DB	server	software	stack

Container
deployment

Server	/	load	balancer

Fast	Caching

User	Management
REST	API

DB	Layer
or	8	others
to	choose

Request	Path

Project	description	and	management	interface	

Class	and	class	properties	configuration

Local	dev

Deployment	
request

Accepted	
and	

deployed

Connection
details

Describe	data	format,	prepare	user	data	export

Published	in	central	schema	store
git.cbm.gsi.de/TGenBase/SchemaStore

Central	database	server:
compdb.cbm.gsi.de

Address	of	server	endpoint
to	be	used	in	clients

What	is	TGenBase?
• Virtual	DB	engine
• Made	for	scientists,																											

__ not	programmers
• Rich	data	visualization	in	Web
• Language	bindings
• Templated	code	generation

Key	Aspects
• Visual	data	description
• Allows	storage	of	user	defined	

data,	ROOT	objects,	binary	data
• Special	logics	in	addition	to	

CRUD	(create,	read,	update,	
delete)
- Versioned	insert-only	→ nothing	is	lost
- Audited	→ keeps	track	of	user	activity

Check	out	the	data	description	UI	https://tgenbase.com
Source	code	https://tgenbase.com/#/git
Tutorial	example	online	https://tgenbase.com:5050

Currently	6	different	instances	are	hosted	for	CBM	needs

Data	description	is	a	Schema
• Defines	the	contract	between	the	

client	and	server
• Client	and	server	exchange	and	check	

schema	versions
• Schema	evolution	based	on	migrations

Visual	data	description
• Describe	data	classes	in	Web	UI
• Establish	relations	between	classes	(one-to-one,	

one-to-many,	many-to-many)
• Many	built	in	class	property	types,	including	arrays,	

collections,	(ROOT-)objects	using	serialization
• Properties	can	have	custom	default	values,	

validation	rules,	semantic	subtypes	(URI,	LaTeX,	DOI)
• Dictionary	properties	allow	for	easy	Id-Name	lookup
• Static	data	description	for	initial	DB	seeding
• Saving	and	loading	of	projects,	fetching	from	git

☞ Same	description	used	to	generate	the	database	
layout,	server	to	host	data,	and	clients	to	fetch	data	
objects	(C++,	Python,	LabVIEW)
☞ Rich	data	visualization	in	a	full	fledged	CMS

Schema	development	workflow

Query	building	interfaces	in	UI	and	C++

Data	visualization	UI	in	the	
CMS	generated	from	schema

Left:	version	history	(logistics)
Right:	view	of	a	single	
object	properties

Data	visualization
• A	Content	Management	System	

(CMS)	is	generated	from	schema
• Allows	for	navigation	between	

different	classes	and	their	relations
• Provides	search	functionality	by	

single	fields	or	using	a	dynamic	
query	builder	interface

• Data	display	customization
• Data	visualization:	ROOT	objects	

(JSROOT),	images,	PDFs,	
spreadsheets

• Operator’s	workspace	to	create	
new	entries	and	edit	existing,	
upload	files,	etc.

• Admin	panel	to	customize	server	
behavior,	manage	users,	etc.

Server
• Production	server	runs	inside	docker container	configured	

with	docker-compose	using	Laradock as	a	recipe	book
• Provides	standard	RESTful	API	to	access	data	by	JSON	

message	exchange	with	clients	using	token	authentication
• Provides	configurable	role-based	user	permission	

management,	user	import	from	LDAP	directories
• Caches	data	for	frequent	access	in	key-value	storages
• Communicates	with	underlying	DB	Management	Systems
• Ongoing	work	towards	push-to-deploy

• Local	development	server	has	minimum	requirements	and	
is	bootstrapped	with	a	shell	script,	runs	on	Linux	and	macOS

Uses	in	CBM	experiment	at	future	facility	FAIR	are
- Detector	component,	logistics,	QA	data	storage
- Parameter,	conditions,	configuration	management

