Missing Mass Method for reconstruction of short-lived particles

I. Kisel^{1,2,3}, P. Kisel¹, I. Vassiliev³, M. Zyzak³

(for CBM Collaborations)

¹Goethe University, Frankfurt am Main, Germany ²FIAS, Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany ³GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany

- CBM experiment
- KF Particle package
- Missing mass method
- Summary

ErUM-Data

für Bildung und Forschung

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

Comparison with the conventional approach

Reconstruction challenge in CBM

KF Particle: Reconstruction of short-lived particles

KFParticle provides uncomplicated approach to physics analysis (used in CBM, ALICE and STAR)

V. Akishina, I. Kisel, Uni-Frankfurt, FIAS

KF Particle provides a simple and very efficient approach to physics analysis

(P; Pi).SetProduction

Concept:

- Mother and daughter particles have the same state vector and are treated in the same way
- Reconstruction of decay chains
- Kalman filter based
- Geometry independent
- Vectorized
- Uncomplicated usage

Functionality:

- Construction of short-lived particles
- Addition and subtraction of particles
- Transport
- Calculation of an angle between particles
- Calculation of distances and deviations
- Constraints on mass, production point and decay length
- KF Particle Finder

MMCP 2017, Dubna, 07.07.2017 11/16

STAR Collaboration Meeting

by the state vector and the

information about tracking and

usage of covariance matrices is ed on the Kalman filter (KF).

nd vectorised algorithms.

1 in the same way.

allows two reconstruct easily

ndent and can be adapted to **R**).

KF Particle Finder

Methods for Reconstructions of Strange Particles

Conventional method

Missing mass method

- 1. Find tracks of charged daughter from mother particle and both charged daughters from neutral particle in STS and MVD.
- 2. Reconstruct the neutral daughter from its charged daughters.
- 3. Reconstruct mother particle from the charged and obtained neutral daughters.

- 1. Find tracks of mother particle and its charged daughter in STS and MVD.
- 2. Reconstruct the neutral daughter from the mother and the charged daughter particles.
- 3. Reconstruct mother particle from the charged and obtained neutral daughters.

Missing mass method for reconstruction of Σ hyperons

 Σ^+ and Σ^- physics: completes the picture of strangeness production: abundant particles, carry out large fraction of strange quarks.

 Σ^+ and Σ^- have only channels with at least one neutral 10 ughter. $\sigma = 5.7 \text{ MeV/c}^2$ •

$\Sigma^{+} \rightarrow p\pi^{0}$ $\Sigma^{+} \rightarrow n\pi^{+}$	$\overline{\Sigma}{}^+ \longrightarrow \overline{p} \pi^0$	BR = 5
	$\overline{\Sigma}{}^+ \longrightarrow \overline{n}^-$	BR = 48
$\Sigma^{-} \rightarrow n\pi^{-}$	$\overline{\Sigma}$ - $\rightarrow \overline{n}\pi$ -	BR = 99

- Can not to be identified by the PID detectors. •
- Identification is possible by the decay topology:

Extended KF Particle Finder Algorithm

5M central AuAu UrQMD events at 10 AGeV

- CBM allows clean reconstruction of strange particle spectra.
- High efficiency with high significance and signal to \bullet background ratios.

Strange particles by the missing mass method

- hyperons, resonances and hypernuclei.
- the conventional and missing mass methods.
- conventional method, such as $\Xi^{-} \rightarrow \pi^{-} (\Lambda \rightarrow n\pi^{0}), \Omega^{-} \rightarrow K^{-} (\Lambda \rightarrow n\pi^{0}).$
- systematic studies.

We will soon make our algorithms available under GPL license:

- the Kalman Filter to estimate trajectory parameters (0.5 µs/core/track);
- the Cellular Automaton for searching for particle trajectories in STS (100 µs/core/track);
- the Cellular Automaton for searching for particle trajectories in TPC (70 µs/core/track);
- the KF Particle Finder package with more than 150 decay channels implemented (100 µs/core/decay).

If you have an interest in these algorithms, please contact me.

• The CBM detector system is perfectly suitable for investigation of rare observables such as strange and multi-strange

• The FLES (First Level Event Selection) package will be used for full online event reconstruction and selection.

• Two independent approaches for reconstruction of strange particles are developed and implemented in FLES based on

• The missing mass method allows to cover an additional kinetic region and decay channels not visible for the

• Both methods show high efficiency, significance and S/B rations. The results are comparable and can be used for

