Results from the CBM mini-FLES Online Computing Cluster Demonstrator

Jan de Cuveland

cuveland@compeng.uni-frankfurt.de

FIAS Frankfurt Institute for Advanced Studies Goethe-Universität Frankfurt am Main, Germany

SPONSORED BY THE

Federal Ministry of Education and Research

CHEP 2019 Conference 2019-11-05 in Adelaide, Australia

The CBM Experiment at FAIR

Jan de Cuveland – CBM mini-FLES – CHEP 2019 – Adelaide, Australia, 2019-11-05

- Fixed target heavy ion experiment at FAIR
- Physics goal: exploration of the QCD phase diagram
- Complex (topological) trigger signatures
- Extreme reaction rates of up to **10 MHz** and track densities up to 1000 tracks in aperture
- Full online event reconstruction needed
- Self-triggering free-streaming readout electronics
- Event selection exclusively done in FLES HPC cluster

First-level Event Selector (FLES)

- FLES is designed as an **HPC** cluster
 - Commodity PC hardware
 - FPGA-based custom PCIe input interface
 - Total input data rate > 1 TByte/s
- Located in the Green IT Cube data center
 - Cost-efficient infrastructure sharing
 - Maximum CBM online computing power only needed in a fraction of time \rightarrow combine and share computing resources

Consequences

- Transmit 1 TByte/s over 1000 m distance
- Boundary condition for online computing architecture

CBM DAQ/FLES Architecture

- Initial DAQ/FLES architecture \rightarrow basis for mini-CBM setup
 - Single flat cluster design
 - Two FPGA-based stages: Data Processing Board (DPB) and FLES Interface Board (FLIB)
 - Long-range connection to Green Cube via custom optical links
- Side note: test results with standard network components will allow a revised architecture
 - Long-range connection to Green Cube via **standard network** equipment (e.g., long-range InfiniBand)
 - Split computing into 2 dedicated clusters: entry cluster and compute cluster
 - Combine DPB and FLIB to single FPGA board (similar to ATLAS, LHCb and ALICE)

lan de Cuveland – CBM mini-FLES – CHEP 2019 – Adelaide, Australia, 2019-11-05

A slice of CBM: mini-CBM (mCBM)

- mCBM:
 - A complete slice of the full CBM system (hardware and software)
 - Study **integration** (and identify missing pieces)
 - Eventually, apply online analysis to live physics data

Jan de Cuveland – CBM mini-FLES – CHEP 2019 – Adelaide, Australia, 2019-11-05

- mFLES:
- Online system demonstrator with all data path components
- Study integration and verify concepts
- Extensive online monitoring (online reconstruction still WIP)
- Hardware currently approx. 2 % of foreseen FLES system

FLES Input Interface

- FPGA-based PCIe board: FLIB
 - Prepares and indexes data for timeslice building
 - Custom PCIe DMA interface, full offload engine
- Optimized data scheme for zero-copy timeslice building
 - Transmit microslices via PCIe/DMA directly to userspace buffers
 - Buffer placed in Posix shared memory, can be registered in parallel for InfiniBand RDMA
- mCBM: 4 FLIBs in 2 nodes
 - 12 input links connected to detectors
 - Implemented on HTG-K7 development boards
- Front-end interface employed at mCBM
 - Custom link, FLIM module
 - Input link commissioning with BER < 4.6e-16 (808 TB, 0 errors)

Jan de Cuveland – CBM mini-FLES – CHEP 2019 – Adelaide, Australia, 2019-11-05

500

10 k

1 k

100 k

Timeslice Building and Online Analysis Interface

Timeslice

- Two-dimensional indexed access to microslices
- Overlap allows limited timing calibration in front-en
- Interface to online reconstruction software

- Timeslice building: combine matching time intervals from all input links to one "timeslice" (processing interval)
 - Distribute different timeslices to different processing
- Timeslice data management concept
 - Timeslice is self-contained
 - Calibration and configuration data distributed to all nodes
 - No network communication required during reconstruction and analysis

	Microslice
nd	 Timeslice substructure Constant in experiment time
	 Allow overlapping timeslices

FLES Data Management Framework

- RDMA-based timeslice building (flesnet)
- Works in close conjunction with input interface (FLIB) hardware design
- Paradigms:
 - Do not copy data in memory
 - Maximize throughput
- Based on microslices, configurable overlap
- Delivers fully built timeslice to reconstruction code

• 10 GBit/s custom optical link

FLIM

FEE

Initial implementation of all components available

- C++, Boost, IB verbs
- Critical network performance optimized for > 1 TB/s
- Full data chain software employed at mCBM

FLES Control

- Prototype
 configuration
 and process
 management on
 mFLES cluster
- Reproducible data taking on multiple nodes, timeslice building from EN to PN
- Successfully employed in all global mCBM runs

Jan de Cuveland – CBM mini-FLES – CHEP 2019 – Adelaide, Australia, 2019-11-05

mFLES Setup and Functionalities Summary

- mFLES setup
 - 4 FLIB input cards, **12 FLIM links** (of 16/32), 2 entry nodes, **3–10 processing nodes** (of 36), InfiniBand network
 - Single-mode links from mCBM to Green Cube
- mFLES software
 - Distributed data taking
 - Full flesnet chain with **timeslice building**
 - Automated run control with prototype configuration and process management

mCBM Campaigns

- Two mCBM campaigns with beam: Dec 2018 and Mar 2019 (next: Nov 2019)
- mini-FLES: central readout element
- 8 TB recorded, high-rate runs on last two days
 - Physics data at SIS-18, Ag-Ag
 - With detector systems: T0, STS, TOF, RICH, MUCH

mCBM Stability and Observed Total Data Rate

• Typical example: run 155

- Configuration tag: sts2_much4_tof5_rich_7pn_rec
- 2.5 mm gold target; ~ 3×10⁶ ions/s
- No major issues related to FLES components seen
 Jan de Cuveland CBM mini-FLES CHEP 2019 Adelaide, Australia, 2019-11-05

- FLES data path worked without problems
 - Internal pattern generators and automated data integrity checks proved useful for commissioning with detectors
- Timeslice building successfully scaled to several nodes

Observed Total Data Rate (Highest Intensity)

Example: run 175

Jan de Cuveland – CBM mini-FLES – CHEP 2019 – Adelaide, Australia, 2019-11-05

- Peak data rate
 > 2.5 GByte/s
 - Highest intensity (T0 in saturation)
 - Configuration tag: sts2_much4_tof5_rich_7pn_rec
- Recorded to 7 PNs, employed Flesnet buffers to average the data rates
 - Derandomization working perfectly, no data loss
 - mFLES well below performance limit

cec

Perspective: InfiniBand HDR Network

Jan de Cuveland – CBM mini-FLES – CHEP 2019 – Adelaide, Australia, 2019-11-05

- CBM was one of the very first customers in EMEA running an InfiniBand HDR setup
 - Installed in mFLES cluster
- HCA implements 2
 PCIe devices
 - Simultaneous streams on both PCIe devices
- Measured maximum link bandwidth:
 198.3 Gbit/s

Summary

Compressed Baryonic Matter (CBM) experiment at FAIR

- High event rates (10⁷ Hz), complex (topological) trigger signatures
- Self-triggered detector front-ends, data push readout architecture
- Central CBM physics selection system: First-Level Event Selector (FLES)
 - HPC processor farm including FPGAs (at entry stage) and many-core architectures (e.g., GPUs)
 - >1 TByte/s input data stream, timeslice building in RDMA-enabled network

• FLES demonstrator: mini-FLES

- Slice of the foreseen full FLES system, in live operation as part of mini-CBM
- All data path components including **interface hardware** and timeslice building
- Long-term developments fully demonstrated for the first time
- FLES data path worked without problems, well below performance limit
- Overall successful operation, further extending scope for next campaigns

SPONSORED BY THE

Federal Ministry of Education and Research

Jan de Cuveland cuveland@compeng.uni-frankfurt.de