

RunCtrl and DCS-FEE-Interface for MuPix Telescope PANDA Collaboration Meeting 19/3

Florian Feldbauer

Ruhr-Universität Bochum - Experimentalphysik I AG

Run Control

- Part of ECS
- Commands distributed to DAQ and DCS
- Defined process of operating detector
- Use Finite State Machine (FSM) to power detector up, prepare for data taking, ...

DCS-FEE-Interface

- Part of FSM is configuration of FEE
- Should be triggered by EPICS
- EPICS not made for large data throughput
- \Rightarrow "External" program needed
 - Configuration data should be fetched from Configuration Database
 - Transmitted via SODAnet to FEE

The MuPix 8 Chip

- Originally developped for Mu3e
- Physical size: 10.8 × 19.5mm²
- Active area: \sim 10.2 \times 16.2mm²
- Matrix: 128 × 200 Pixels, three Submatrices MatA: source follower MatB/C: current mode
- Pixel: 80 × 81µm²
- Charge sensitive amplifier in each pixel
- 4 LVDS links (each submatrix + select/mux)
- Configuration via \sim 2 kbit bitstream per row

Beamtests with MuPix Telescope

- Testbeam in September 2019
- Four MuPix8 chips in beam (JESSICA hall)
- x-y-adjustable holding frames and positioning rail from HIM + height adjustable pedestal

Beamtests with MuPix Telescope

Beamtests with MuPix Telescope

- Goals: Readout of all submatrices (A,B,C) of four chips, test new control software based on EPICS for LV/HV and sensor configuration
- Wrote prototype runctrl for test setup
- Wrote prototype DCS-FEE-Interface to configure TRB and MuPix

Run Control for Telescope Setup

- FSM: State Notation Language Sequence program
- EPICS Records holding information (State, CMD, ...)
- DAQ monitors current state of DCS (not tested!)
- Error Handling missing!

- Run Con	trol		
Command	Shut down	go to standby	Start data taking
State	Off	FEE Conf	
Maskfile	beamtimeSep19		

7

RunCtrl + DCS-FEE

DCS-FEE-Interface for Telescope Setup

- DCS-FEE-Interface implemented in python3
- Abstract base class "DetectorFeeConfig"
 - Monitors "FEE Command" PV from EPICS (PVaccess)
 - Initializes TRBnet interface
- Implementation of Telescope config in derived class
 - Get configuration parameters (67 per MuPix, single PVaccess call)
 - Read Maskfile (file name from EPICS PV)
 - Generate 200 bitstreams
 - Send bitstream via trbnet to TRB/MuPix

Problems

- DAQ regulary reading values from TRBnet ("SERDES monitor")
- TRBnet crashed when DAQ program and DCS-FEE-Interface running at same time
- Some error in calculation of threshold voltages

Summary

- First successfull test of RunCtrl and Finite State Machine
- DCS-FEE-Interface in principal works
- Currently python code, C++ might be better
- TrbNet too unstable (multiple clients lead to crashes)
- No implementation for configuration DB, yet