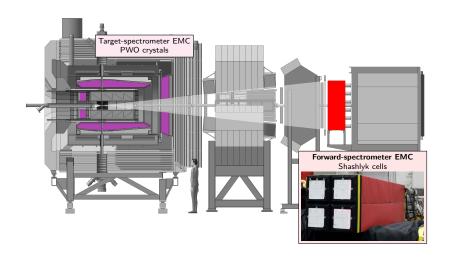
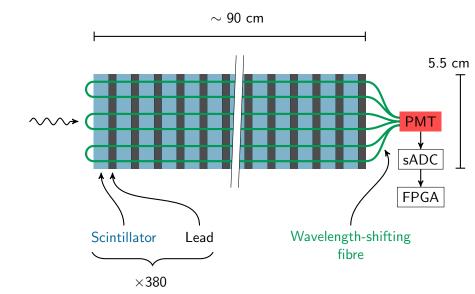
Feature extraction for the shashlyk calorimeter



Markus Preston, Per-Erik Tegnér

Gratefully acknowledging the help from Stefan Diehl and the JLU Gießen group


PANDA Collaboration Meeting, GSI, 2019-11-06

The PANDA electromagnetic calorimeters

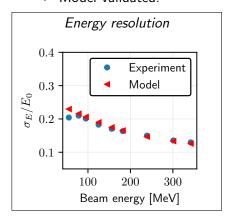
Detector structure

Side view of cell

Aim of this work

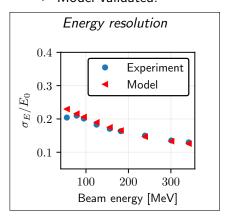
- ► Find an FPGA triggering/feature extraction algorithm, optimised with respect to:
 - ► Pulse identification (triggering)
 - Energy resolution
 - ▶ Time resolution
 - Pile-up identification/reconstruction

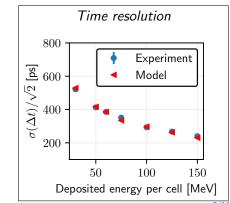
Aim of this work

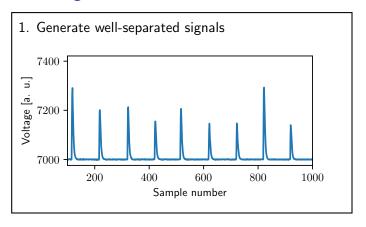

- Find an FPGA triggering/feature extraction algorithm, optimised with respect to:
 - Pulse identification (triggering)
 - Energy resolution
 - ▶ Time resolution
 - Pile-up identification/reconstruction
- ► How?
 - ▶ We have developed a Monte Carlo model of a 4 × 4 prototype (starting with Geant4). Talk at June 2019 CM.
 - ▶ Use the Monte Carlo model to generate pulses with known underlying energy, time and pile-up information. Evaluate performance of feature-extraction algorithms. **This talk.**

Recap of June presentation

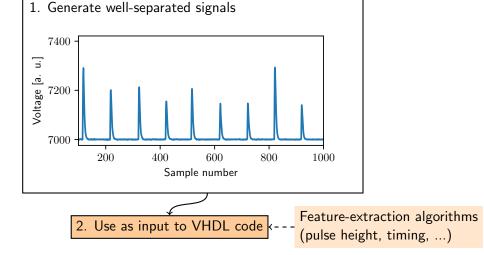
- ▶ 2014 MAMI photon testbeam data provided by Gießen group.
- Model of detector, photon transport, photoelectron generation and readout developed at Stockholm University
 - \Rightarrow realistic description of event-by-event fluctuations.

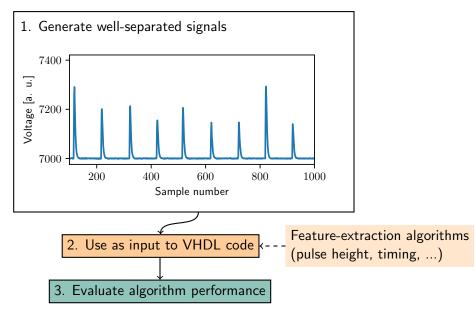

Recap of June presentation


- ▶ 2014 MAMI photon testbeam data provided by Gießen group.
- Model of detector, photon transport, photoelectron generation and readout developed at Stockholm University
 - ⇒ realistic description of event-by-event fluctuations.
- Model validated:

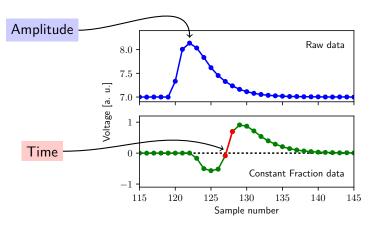

Recap of June presentation

- ▶ 2014 MAMI photon testbeam data provided by Gießen group.
- Model of detector, photon transport, photoelectron generation and readout developed at Stockholm University
 - ⇒ realistic description of event-by-event fluctuations.
- Model validated:

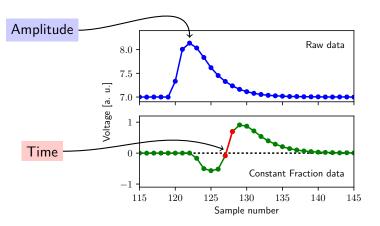



Evaluating feature extraction — method

Evaluating feature extraction — method



Evaluating feature extraction — method


Existing algorithm

- Amplitude from highest sample in pulse
- ► Time from Constant Fraction method (linear interpolation)

Existing algorithm

- Amplitude from highest sample in pulse
- Time from Constant Fraction method (linear interpolation)

- Validity confirmed (analysis of 2014 testbeam data)
- ▶ Potential issues: (i) does not solve pile-up problem, (ii) relies on linear interpolation between two samples.

- ▶ Based on *optimal filter*, used for example in ATLAS
- ► Maximises signal-to-noise ratio (when noise = Gaussian)

- Based on optimal filter, used for example in ATLAS
- Maximises signal-to-noise ratio (when noise = Gaussian)
- Assume **fixed pulse shape** $g(t_i)$
- ▶ Free parameters: **Amplitude** A and **phase** τ

$$f(t_i) = Ag(t_i - \tau) \approx Ag(t_i) - A\tau g'(t_i)$$

- Based on optimal filter, used for example in ATLAS
- Maximises signal-to-noise ratio (when noise = Gaussian)
- Assume **fixed pulse shape** $g(t_i)$
- ▶ Free parameters: **Amplitude** A and **phase** τ

$$f(t_i) = Ag(t_i - \tau) \approx Ag(t_i) - A\tau g'(t_i)$$

Assume small au o linearise

- Based on optimal filter, used for example in ATLAS
- Maximises signal-to-noise ratio (when noise = Gaussian)
- Assume **fixed pulse shape** $g(t_i)$
- ▶ Free parameters: **Amplitude** A and **phase** τ

$$f(t_i) = Ag(t_i - \tau) \approx Ag(t_i) - A\tau g'(t_i)$$

Assume small $au o ext{linearise}$

- Construct Finite Impulse Response (FIR) filter with carefully selected sets of coefficients a and b.
- $ightharpoonup A = \sum a_i S_i$
- $A\tau = \sum b_i S_i$

- Based on optimal filter, used for example in ATLAS
- Maximises signal-to-noise ratio (when noise = Gaussian)
- Assume **fixed pulse shape** $g(t_i)$
- ▶ Free parameters: **Amplitude** A and **phase** τ

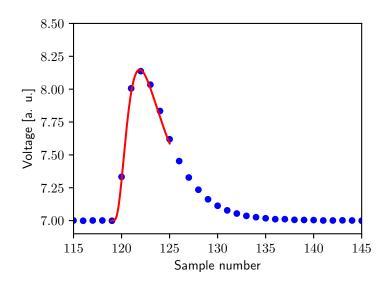
$$f(t_i) = Ag(t_i - \tau) \approx Ag(t_i) - A\tau g'(t_i)$$

Assume small $au o ext{linearise}$

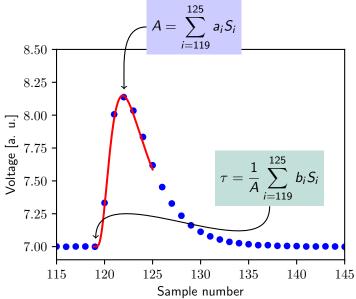
- Construct Finite Impulse Response (FIR) filter with carefully selected sets of coefficients a and b.
- $ightharpoonup A = \sum a_i S_i$
- $\rightarrow A\tau = \sum b_i S_i$
- ▶ Sets of coefficients are $\underline{\text{fixed}}$ → calculated $\underline{\text{offline}}$ → FPGA implementation possible!

New algorithm — new developments

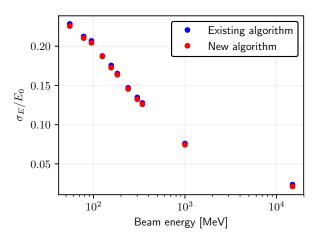
Optimal filter method has been refined to address
(i) free-running trigger nature of PANDA, (ii) pile-up reconstruction


New algorithm — new developments

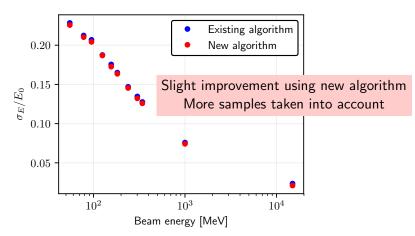
- Optimal filter method has been refined to address
 - (i) free-running trigger nature of PANDA, (ii) pile-up reconstruction
- New developments:
 - In PANDA, pulses not necessarily in phase with sampling clock.
 - Make first, crude, estimate of pulse phase using a simplified Constant Fraction algorithm (binary search).
 - ► Then, apply principles of optimal filter.


New algorithm — new developments

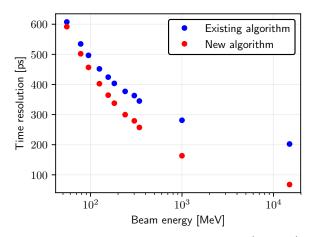
- Optimal filter method has been refined to address
 - (i) free-running trigger nature of PANDA, (ii) pile-up reconstruction
- New developments:
 - In PANDA, pulses not necessarily in phase with sampling clock.
 - Make first, crude, estimate of pulse phase using a simplified Constant Fraction algorithm (binary search).
 - ▶ Then, apply principles of optimal filter.
 - 2. Make pileup reconstruction/recovery possible.
 - Limit number of optimal filter coefficients to first part of pulse.
 - See later slides.


New algorithm — example

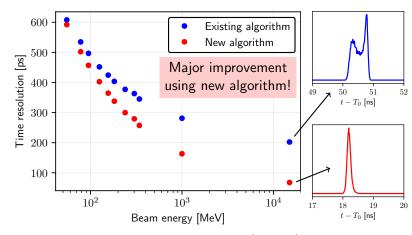
New algorithm — example



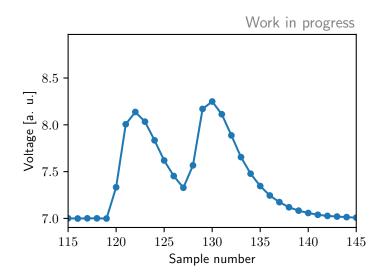
Results — energy resolution


Relative energy resolution of single cell determined by fitting Novosibirsk distribution to pulse-height (amplitude A) spectra.

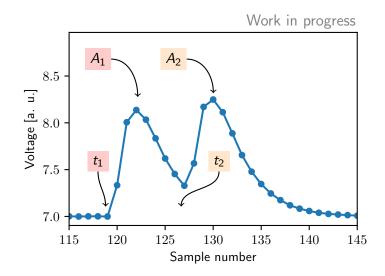
Results — energy resolution


Relative energy resolution of single cell determined by fitting Novosibirsk distribution to pulse-height (amplitude A) spectra.

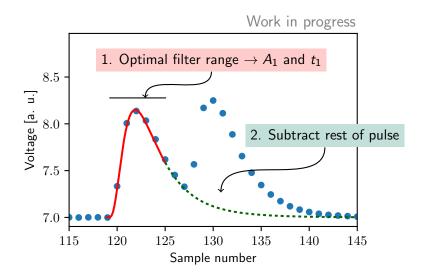
Results — time resolution


Time resolution determined from $\sigma(t - T_0)$. T_0 : time when photon hits front of detector.

Results — time resolution



Time resolution determined from $\sigma(t - T_0)$. T_0 : time when photon hits front of detector.


What about pileup reconstruction?

What about pileup reconstruction?

Pileup reconstruction

 Shashlyk Monte-Carlo model has been developed and validated

- Shashlyk Monte-Carlo model has been developed and validated
- A new method for FPGA-based feature extraction has been developed
- Based on method of optimal filtering

- Shashlyk Monte-Carlo model has been developed and validated
- A new method for FPGA-based feature extraction has been developed
- Based on method of optimal filtering
- Slight improvement in energy resolution
- Big improvement in time resolution (relative to linear Constant Fraction)

- Shashlyk Monte-Carlo model has been developed and validated
- A new method for FPGA-based feature extraction has been developed
- Based on method of optimal filtering
- Slight improvement in energy resolution
- Big improvement in time resolution (relative to linear Constant Fraction)
- Method can be used to reconstruct pile-up events
- Optimisations needed for final shashlyk digitiser hardware (e.g. different shaping time and sampling rate)

Thank you for your attention!