


# Study to Determine the Quantum Numbers of E Resonances with PAWIAN

November 6<sup>th</sup> 2019| PANDA CM 19/3 GSI | Jenny Pütz





#### **Motivation**

# panda

#### **Partial Wave Analysis**

- Up to know: worked on analysis of  $\bar{p}p \to \bar{\Xi}^+ \Xi^{*-}$  with  $\Xi^{*-} \to \Lambda K^-$  (& c.c.)
- Quantum number of most
  \(\mathcal{E}\) resonances unknown or only estimated
- No experimental data and theoretical predictions
- PWA: possibility to determine those quantum numbers

Table 1. The status of the  $\Xi$  resonances. Only those with an overall status of \*\*\* or \*\*\*\* are included in the Baryon Summary Table.

|             |       |                | Status as seen in — |             |            |                |                |  |
|-------------|-------|----------------|---------------------|-------------|------------|----------------|----------------|--|
| Particle    | $J^P$ | Overall status | $\Xi\pi$            | $\Lambda K$ | $\Sigma K$ | $\Xi(1530)\pi$ | Other channels |  |
| $\Xi(1318)$ | 1/2+  | ***            |                     |             |            |                | Decays weakly  |  |
| $\Xi(1530)$ | 3/2 + | ****           | ****                |             |            |                |                |  |
| $\Xi(1620)$ |       | *              | *                   |             |            |                |                |  |
| $\Xi(1690)$ |       | ***            |                     | ***         | **         |                |                |  |
| $\Xi(1820)$ | 3/2-  | ***            | **                  | ***         | **         | **             |                |  |
| $\Xi(1950)$ |       | ***            | **                  | **          |            | *              |                |  |
| $\Xi(2030)$ |       | ***            |                     | **          | ***        |                |                |  |
| $\Xi(2120)$ |       | *              |                     | *           |            |                |                |  |
| $\Xi(2250)$ |       | **             |                     |             |            |                | 3-body decays  |  |
| $\Xi(2370)$ |       | **             |                     |             |            |                | 3-body decays  |  |
| $\Xi(2500)$ |       | *              |                     | *           | *          |                | 3-body decays  |  |

\*\*\*\* Existence is certain, and properties are at least fairly well explored.

\* Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

\*\* Evidence of existence is only fair.

\* Evidence of existence is poor.

PDG2014



<sup>1)</sup> See plenary talk and talk in Hyperon Session at CM 18/3

#### What is PAWIAN?



- PArtial Wave Interactive ANalysis software
- Different spin formalisms and dynamics
- Event-based maximum likelihood fit (MINUIT2)
- Generates events based on user-defined decay model or on fit results obtained with real data

For further information: <a href="https://panda-wiki.gsi.de/foswiki/bin/view/PWA/PawianPwaSoftware">https://panda-wiki.gsi.de/foswiki/bin/view/PWA/PawianPwaSoftware</a>



# **Strategy**

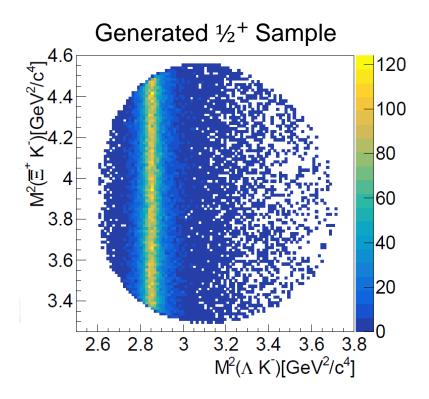


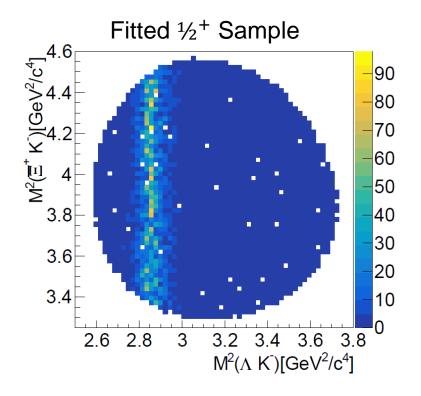
- Is it possible to reconstruct the input values?
- Event Generation:
  - 1 data set of 10000 events for  $\Xi \Lambda K^-$
  - 2 data sets of 3000 events for each resonance
- $p_{\bar{p}}$ = 4.6 GeV/c and  $L_{max}$ =0,1 for each data set
- Different quantum numbers generated for  $\Xi(1690)^-$  and  $\Xi(1820)^ \frac{1}{2}^-, \frac{1}{2}^+, \frac{3}{2}^-, \frac{3}{2}^+$
- Fit all hypotheses to each generated data set
- At later stage: included crossed channel  $\bar{p}p \to \bar{\Lambda}(1890)\Lambda$



### **How are Results Compared?**

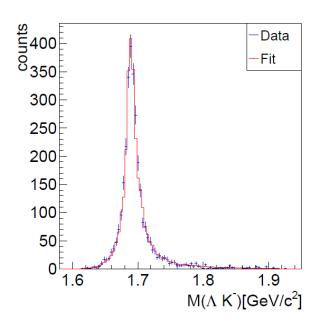


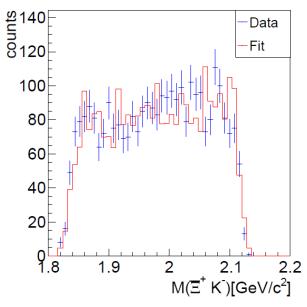

- Different criteria used: BIC and AIC
- BIC: Bayesian information criterion
  - model selection among a finite set of models
- AIC: Akaike information criterion
  - Estimates quality of model relative to set of models
- In both cases, model with lowest value is preferred
- Final selection based on :  $\Delta AIC = AIC_i AIC_{min}$
- $\Delta$ AIC < 2: evidence for the model;  $\Delta$ AIC > 10: model unlikely
- Special case: AIC and BIC show different tendencies => AIC+BIC

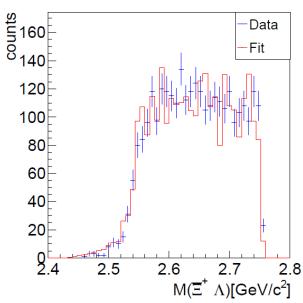



# **Single Resonances**





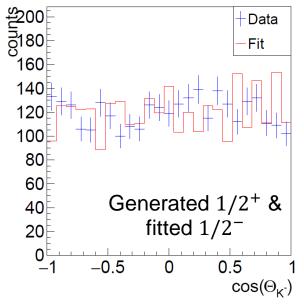



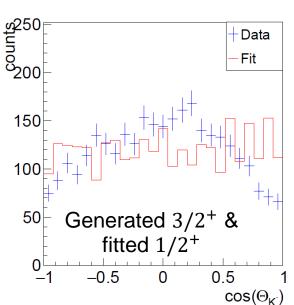


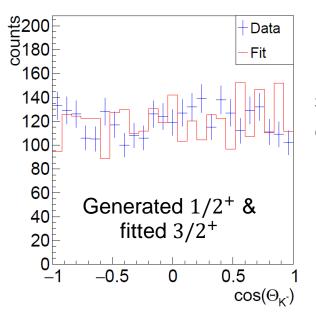




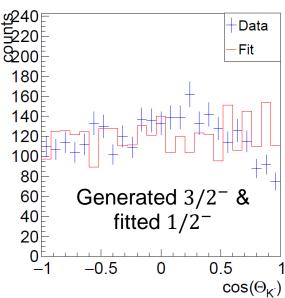


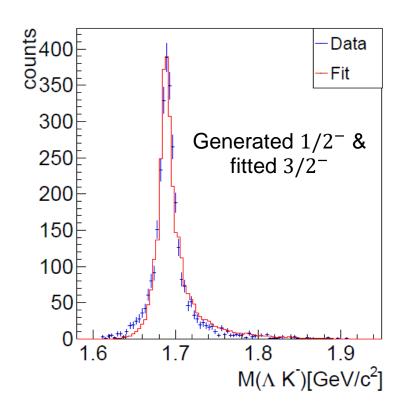


In all tested cases: generated hypothesis preferred by fit!

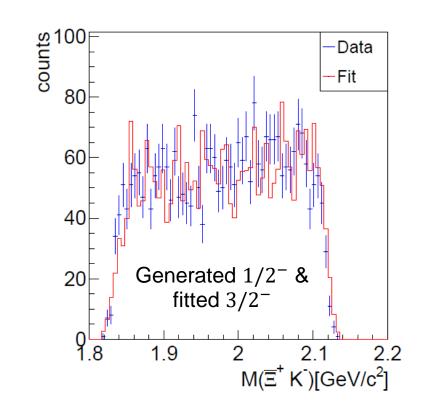

| generated<br>hypothesis |      | NLL      | BIC      | AIC      | ΔΒΙϹ  | ΔΑΙϹ  |   |
|-------------------------|------|----------|----------|----------|-------|-------|---|
|                         | 1/2+ | -3,989.3 | -7,930.5 | -7,966.5 | 0     | 0     | _ |
| 1/2+                    | 1/2- | -3,970.3 | -7,893.7 | -7,929.8 | 36.8  | 36.7  |   |
| 1/2                     | 3/2+ | -3,963.3 | -7,862.6 | -7,910.6 | 67.9  | 55.9  |   |
|                         | 3/2- | -3,928.9 | -7,793.8 | -7,841.9 | 136.7 | 124.6 |   |







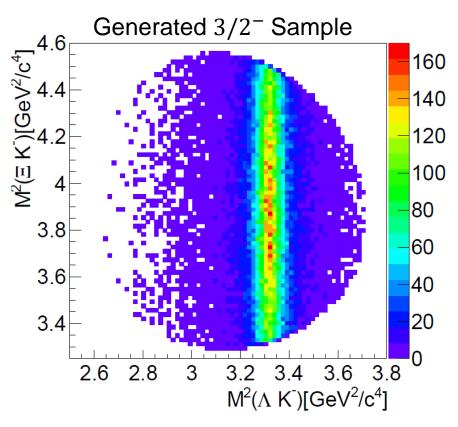



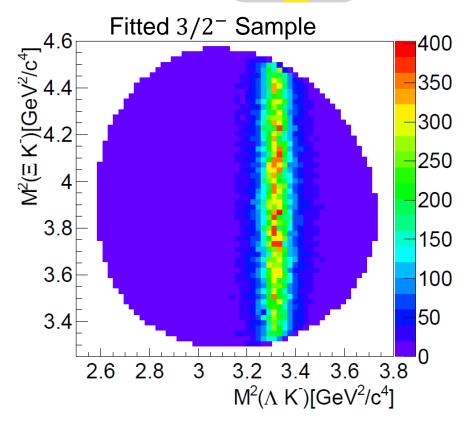




not caused by statistical effects








- True hypothesis preferred by fit in each case
- Similar fitted angular distributions as for  $L_{\rm max}=0$







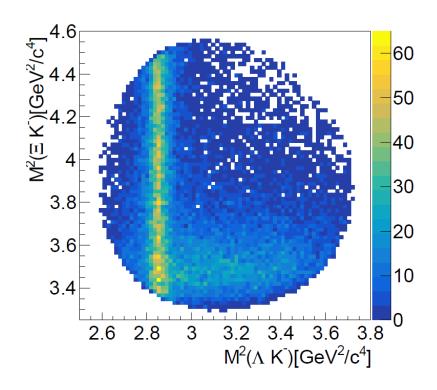


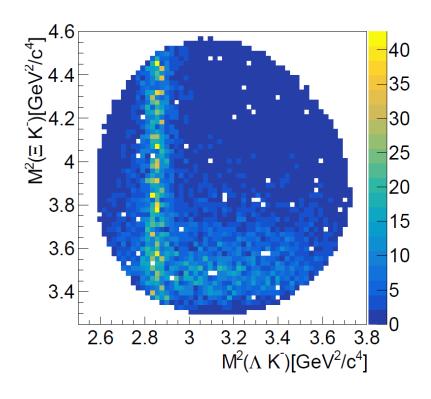
| generated<br>hypothesis | fit<br>hypothesis | NLL      | BIC      | AIC      | ΔΒΙϹ | ΔΑΙС |
|-------------------------|-------------------|----------|----------|----------|------|------|
|                         | 1/2+              | -3,010.5 | -6,092.9 | -6,128.9 | 0    | 0    |
| 1 /2+                   | 1/2-              | -3,059.8 | -6,071.5 | -6,107.5 | 21.4 | 12.4 |
| 1/2+                    | 3/2+              | -3,071.1 | -6,078.1 | -6,126.6 | 14.8 | 2.3  |
| _                       | 3/2-              | -3,055.1 | -6,046.2 | -6,094.3 | 46.7 | 34.6 |

6. November 2019

Page 11

For  $L_{\text{max}} = 1$  even harder to distinguish

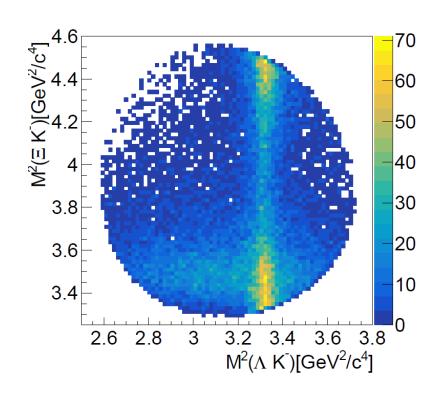


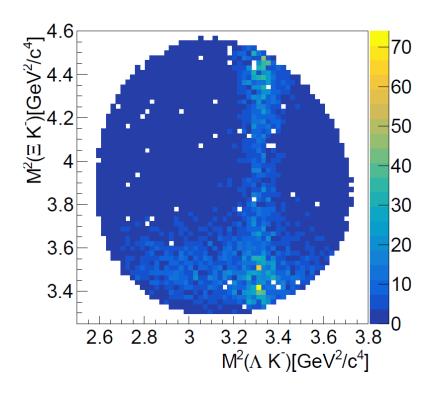


#### **Crossed Channel**



# $\Xi(1690)^{-}(L_{\text{MAX}}=1)$








# $\Xi(1820)^{-}(L_{\text{MAX}}=0)$









# **Summary & Outlook**



- Performed test to reproduce quantum numbers
- "Single" resonances: promising
- Included crossed channel:  $\bar{p}p \rightarrow \bar{\Lambda}(1890)\Lambda$
- Statistics is limiting factor
- Systematic studies with higher statistics needed
- Combined sample for both E resonances
- Same test should be done for charge conjugate particles



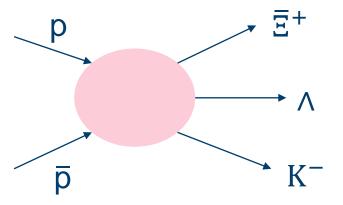


# Thank you for your attention





#### **Backup**




#### Reminder



#### **Partial Wave Analysis**

- Partial Wave Analysis (PWA): tool to extract complex amplitudes of process
- In case of low energies → process dominated by resonances
- PWA gives possibility to determine:
  - Mass & width
  - Spin & Parity





#### **Event Generation**



#### Maximum Angular Momentum of $\overline{p}p$

- Beam momentum of 4.6 GeV/c² corresponds to a momentum in center-of-mass frame of:
  - $p_{\rm cm} \approx 600 \, {\rm MeV/c} \, {\rm for} \, \Xi (1690)^- \to L_{\rm max} = 3$
  - $p_{\rm cm} \approx 410 \ {\rm MeV/c} \ {\rm for} \ \Xi(1820)^- \rightarrow L_{\rm max} = 2$



#### **BIC** and AIC



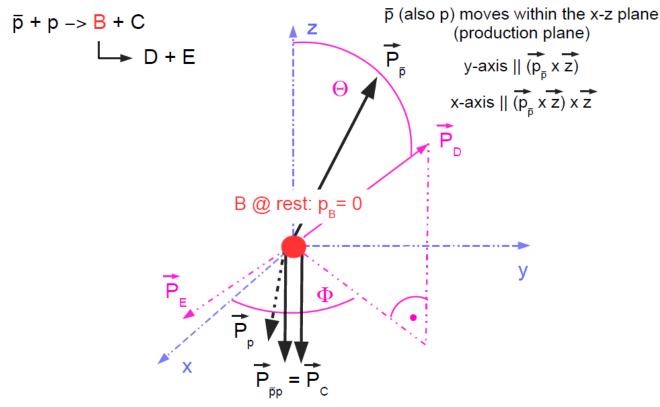
#### Bayesian information criterion (BIC):

is a criterion for model selection among a finite set of models; the model with the lowest BIC is preferred.

$$BIC = 2 \cdot (-LHH) + k \cdot \ln(n)$$

with LHH: maximal loglikelihood value, k: number of free fit parameters and n: number of events in the sample

#### Akaike information criterion (AIC):


is a measure of the relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models

$$AIC = 2k + 2 \cdot (-LLH)$$



# **Helicity Frame**





 $\bar{p}p$  system and C move with same momenta in the negative direction of the z-axis  $(p_{\bar{p}p} = p_B + p_C)$ 

Image from Bertram Kopf



#### **Gottfried-Jackson Frame**



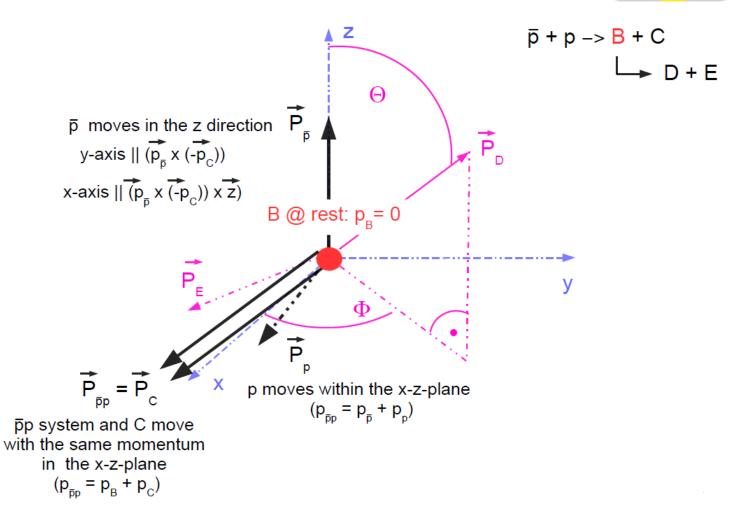



Image from Bertram Kopf





Table 6.3: Results of the different generated and fitted hypotheses for  $\Xi(1690)^-$ . The maximal orbital angular momentum is set to  $L_{\text{max}} = 0$ .

| generated<br>hypothesis | fit<br>hypothesis | NLL      | BIC      | AIC      | ΔΒΙϹ  | ΔΑΙС  | AIC + BIC | $N_{\rm par}$ |
|-------------------------|-------------------|----------|----------|----------|-------|-------|-----------|---------------|
|                         | 1/2+              | -3,989.3 | -7,930.5 | -7,966.5 | 0     | 0     | -15,897.0 | 6             |
| 1 /2+                   | 1/2-              | -3,970.3 | -7,893.7 | -7,929.8 | 36.8  | 36.7  | -15,823.5 | 6             |
| 1/2+                    | 3/2+              | -3,963.3 | -7,862.6 | -7,910.6 | 67.9  | 55.9  | -15,773.2 | 8             |
|                         | 3/2-              | -3,928.9 | -7,793.8 | -7,841.9 | 136.7 | 124.6 | -15,645.7 | 8             |
|                         | 1/2+              | -4,010.9 | -7,973.7 | -8,009.7 | 76.9  | 77.2  | -15,983.4 | 6             |
| 1/2-                    | 1/2-              | -4,049.4 | -8,050.6 | -8,086.9 | 0     | 0     | -16,137.5 | 6             |
| 1/2                     | 3/2+              | -4,011.9 | -7,958.0 | -8,006.1 | 92.6  | 80.8  | -15,964.1 | 8             |
|                         | 3/2-              | -3,865.9 | -7,667.8 | -7,715.9 | 382.8 | 371.0 | -15,383.7 | 8             |
|                         | 1/2+              | -4,115.2 | -8,182.4 | -8,218.5 | 147.8 | 159.8 | -16,400.9 | 6             |
| 3/2+                    | 1/2-              | -4,105.3 | -8,162.5 | -8,198.6 | 167.7 | 179.7 | -16,361.1 | 6             |
| 3/2                     | 3/2+              | -4,197.1 | -8,330.2 | -8,378.3 | 0     | 0     | -16,708.5 | 8             |
|                         | 3/2-              | -4,132.8 | -8,201.6 | -8,249.6 | 128.6 | 128.7 | -16,451.2 | 8             |
|                         | 1/2+              | -3,740.0 | -7,431.9 | -7,467.9 | 101.0 | 113.6 | -14,899.8 | 6             |
| 3/2-                    | 1/2-              | -3,658.3 | -7,268.6 | -7,304.6 | 264.8 | 276.9 | -14,573.2 | 6             |
|                         | 3/2+              | -3,762.9 | -7,461.8 | -7,509.9 | 71.6  | 71.6  | -14,971.7 | 8             |
|                         | 3/2-              | -3,798.7 | -7,533.4 | -7,581.5 | 0     | 0     | -15,114.9 | 8             |





Table 6.4: Results of the different generated and fitted hypotheses for  $\Xi(1690)^-$ . The maximal orbital angular momentum is set to  $L_{\text{max}} = 1$ .

| generated hypothesis | fit<br>hypothesis | NLL      | BIC      | AIC      | ΔΒΙС  | ΔΑΙС  | AIC + BIC | $N_{\rm par}$ |
|----------------------|-------------------|----------|----------|----------|-------|-------|-----------|---------------|
|                      | 1/2+              | -4,259.2 | -8,359.7 | -8,479.9 | 0     | 0     | -16,839.6 | 20            |
| 1/2+                 | 1/2-              | -4,249.4 | -8,338.6 | -8,458.7 | 21.1  | 21.2  | -16,797.3 | 20            |
|                      | 3/2+              | -4,282.5 | -7,862.6 | -7,910.6 | 497,1 | 569,3 | -15,773.2 | 30            |
|                      | 3/2-              | -4,186.7 | -8,324.8 | -8,505.0 | 34.9  | 25.1  | -16,829.8 | 30            |
|                      | 1/2+              | -4,233.7 | -8,307.2 | -8,427.3 | 37.3  | 37.5  | -16,734.5 | 20            |
| 1/2-                 | $1/2^{-}$         | -4,252.3 | -8,344.5 | -8,464.8 | 0     | 0     | -16,809.3 | 20            |
| 1/2                  | 3/2+              | -4,254.0 | -8,267.8 | -8,447.9 | 76.7  | 16.9  | -16,715.7 | 30            |
|                      | 3/2-              | -4,124.4 | -8,008.6 | -8,188.8 | 335.9 | 276.0 | -16,197.4 | 30            |
|                      | 1/2+              | -4,158.2 | -8,156.2 | -8,276.3 | 189.3 | 243.3 | -16,432.5 | 20            |
| 3/2+                 | $1/2^{-}$         | -4,146.0 | -8,131.8 | -8,252.0 | 213,7 | 267.6 | -16,383.8 | 20            |
| 3/2                  | 3/2+              | -4,288.8 | -8,345.5 | -8,519.6 | 0     | 0     | -16,865.1 | 30            |
|                      | 3/2-              | -4,230.1 | -8,219.9 | -8,400.1 | 125.6 | 119.5 | -16,620.0 | 30            |
|                      | 1/2+              | -3,870.5 | -7,580.8 | -7,700.9 | 309.8 | 369.8 | -15,281.7 | 20            |
| 3/2-                 | 1/2-              | -3,802.6 | -7,445.0 | -7,565.1 | 445.6 | 505.6 | -15,010.1 | 20            |
|                      | 3/2+              | -4,013.9 | -7,795.6 | -7,969.8 | 95    | 100.9 | -15,765.4 | 30            |
|                      | 3/2-              | -4,065.4 | -7,890.6 | -8,070.7 | 0     | 0     | -15,961.3 | 30            |



Table 6.5: Results of the different generated and fitted hypotheses for  $\Xi (1820)^-$ . The maximum orbital momentum is set to  $L_{\text{max}} = 0$ .

| generated<br>hypothesis | fit<br>hypothesis | NLL      | BIC      | AIC      | ΔΒΙϹ  | ΔΑΙС  | AIC + BIC | $N_{\rm par}$ |
|-------------------------|-------------------|----------|----------|----------|-------|-------|-----------|---------------|
|                         | 1/2+              | -3,010.5 | -6,092.9 | -6,128.9 | 0     | 0     | -12,221.8 | 6             |
| 1 /2+                   | 1/2-              | -3,059.8 | -6,071.5 | -6,107.5 | 21.4  | 12.4  | -12,179.0 | 6             |
| 1/2+                    | 3/2+              | -3,071.1 | -6,078.1 | -6,126.6 | 14.8  | 2.3   | -12,204.7 | 8             |
|                         | 3/2-              | -3,055.1 | -6,046.2 | -6,094.3 | 46.7  | 34.6  | -12,140.5 | 8             |
|                         | 1/2+              | -2,985.1 | -5,922.1 | -5,958.1 | 23.1  | 23    | -11,880.2 | 6             |
| 1/2-                    | 1/2-              | -2,996.6 | -5,945.2 | -5,981.2 | 0     | 0     | -11,926.4 | 6             |
| 1/2                     | 3/2+              | -2,985.6 | -5,907.1 | -5,955.2 | 38.1  | 26    | -11,862.3 | 8             |
|                         | 3/2-              | -2,951.0 | -5.837.9 | -5,886.0 | 107.3 | 95.2  | -11,723.9 | 8             |
|                         | 1/2+              | -3,033.9 | -6,019.8 | -6,055.8 | 243.6 | 255.6 | -12,075.6 | 6             |
| 3/2+                    | $1/2^{-}$         | -3,034.0 | -6,019.7 | -6,056.0 | 243.7 | 255.6 | -12,075.7 | 6             |
| 3/2                     | 3/2+              | -3,163.7 | -6,263.4 | -6,311.4 | 0     | 0     | -12,574.8 | 8             |
|                         | 3/2-              | -3,139.9 | -6,215.8 | -6,263.8 | 47.6  | 47.6  | -12,479.6 | 8             |
|                         | 1/2+              | -3,271.4 | -6,536.5 | -6,541.5 | 54.9  | 56.5  | -13,078.0 | 6             |
| 3/2-                    | $1/2^{-}$         | -3,254.9 | -6,503.5 | -6,508.5 | 87.9  | 89.5  | -13,012.0 | 6             |
|                         | 3/2+              | -3,292.2 | -6,576.1 | -6,582.7 | 15.3  | 15.3  | -13,158.8 | 8             |
|                         | 3/2-              | -3,299.8 | -6,591.4 | -6,598.0 | 0     | 0     | -13,189.4 | 8             |





Table 6.6: Results of the different generated and fitted hypotheses for  $\Xi (1820)^-$ . The maximum orbital momentum is set to  $L_{\text{max}} = 1$ .

| generated hypothesis | fit<br>hypothesis | NLL      | BIC      | AIC      | ΔΒΙС  | ΔΑΙС  | AIC + BIC | $N_{\rm par}$ |
|----------------------|-------------------|----------|----------|----------|-------|-------|-----------|---------------|
|                      | 1/2+              | -3,170.1 | -6,180.0 | -6,300.1 | 0     | 0     | -12,480.1 | 20            |
| 1/2+                 | 1/2-              | -3,169.6 | -6,179.1 | -6,299.4 | 0.9   | 0.8   | -12,478.4 | 20            |
| 1/2                  | 3/2+              | -3,179.0 | -6,117.9 | -6,298.1 | 62.1  | 2.0   | -12,416.0 | 30            |
|                      | 3/2-              | -3,166.1 | -6,092.9 | -6,272.3 | 87.1  | 27.8  | -12,365.2 | 30            |
|                      | 1/2+              | -3,082.4 | -6,004.6 | -6,124.7 | 24.2  | 24.2  | -12,129.3 | 20            |
| 1/2-                 | 1/2-              | -3,094.5 | -6,028.8 | -6,148.9 | 0     | 0     | -12,177.7 | 20            |
| 1/2                  | 3/2+              | -3,089.6 | -5,939.0 | -6,119.2 | 89.8  | 29.7  | -12,058.2 | 30            |
|                      | 3/2-              | -3,054.3 | -5.868.5 | -6,048.7 | 160.3 | 100.2 | -11,917.2 | 30            |
|                      | 1/2+              | -3,092.4 | -6,024.7 | -6,144.8 | 306.3 | 366.4 | -12,169.5 | 20            |
| 3/2+                 | 1/2-              | -3,089.7 | -6,019.3 | -6,139.4 | 311.7 | 371.8 | -12,158.7 | 20            |
| 3/2                  | 3/2+              | -3,285.6 | -6,331.0 | -6,511.2 | 0     | 0     | -12,842.2 | 30            |
|                      | 3/2-              | -3,265.8 | -6,291.4 | -6,471.6 | 39.6  | 39.6  | -12,763.0 | 30            |
|                      | 1/2+              | -3,404.4 | -6,648.7 | -6,768.8 | 256.8 | 316.8 | -13,417.5 | 20            |
| 3/2-                 | 1/2-              | -3,392.7 | -6,625.1 | -6,745.3 | 280.4 | 340.3 | -13,370.4 | 20            |
|                      | 3/2+              | -3,556.7 | -6,873.3 | -7,053.5 | 32.2  | 32.1  | -13,926.8 | 30            |
|                      | 3/2-              | -3,572.8 | -6,905.5 | -7,085.6 | 0     | 0     | -13,991.1 | 30            |



# $\Xi(1690)^ (L_{\text{max}}=1)$ cross channel $\Xi$



Table 6.7: Results of the different generated and fitted hypotheses for  $\Xi (1690)^-$  including the reaction  $\bar{p}p \to \bar{\Lambda}$ (1890) A. The chosen maximum orbital momentum is  $L_{\text{max}} = 1$ .

| generated<br>hypothesis | fit<br>hypothesis | NLL      | BIC      | AIC      | ΔΒΙϹ  | ΔΑΙС  | AIC + BIC | $N_{\rm par}$ |
|-------------------------|-------------------|----------|----------|----------|-------|-------|-----------|---------------|
|                         | 1/2+              | -1,627.6 | -2,838.9 | -3,151.2 | 0     | 4.8   | -5,990.1  | 52            |
| 1/2+                    | $1/2^{-}$         | -1,622.5 | -2,828.7 | -3,141.1 | 10.2  | 14.9  | -5,969.8  | 52            |
|                         | 3/2+              | -1,640.0 | -2,783.5 | -3,156.0 | 55.3  | 0     | -5,939.8  | 62            |
|                         | 3/2-              | -1,636.8 | -2,777.1 | -3,149.5 | 61.7  | 6.5   | -5,926.6  | 62            |
|                         | 1/2+              | -1,673.1 | -2,929.9 | -3,242.3 | 5.6   | 7.2   | -6,172.2  | 52            |
| 1/2-                    | 1/2-              | -1,675.9 | -2,935.5 | -3,247.8 | 0     | 1.7   | -6,183.3  | 52            |
| 1/2-                    | 3/2+              | -1,686.7 | -2,877.1 | -3,249.5 | 58.4  | 0     | -6,126.6  | 62            |
|                         | 3/2-              | -1,675.5 | -2,854.7 | 3,227.1  | 80.8  | 22.4  | -6,081.8  | 62            |
|                         | 1/2+              | -1,811.8 | -3,207.3 | -3,519.6 | 106.5 | 166.6 | -6,726.9  | 52            |
| 3/2+                    | 1/2-              | -1,812.8 | -3,209.2 | -3,521.5 | 104.6 | 164.7 | -6,730.7  | 52            |
| 3/2                     | 3/2+              | -1,905.1 | -3,313.8 | -3,686.2 | 0     | 0     | -7,000.0  | 62            |
|                         | 3/2-              | -1,903.4 | -3,310.4 | -3,682.8 | 3.4   | 3.4   | -6,993.2  | 62            |
|                         | 1/2+              | -1,626.0 | -2,835.5 | -3,147.9 | 132.4 | 192.5 | 5,983.4   | 52            |
| 3/2-                    | 1/2-              | -1,620.4 | -2,824.5 | -3,136.8 | 143.4 | 203.5 | -5,961.3  | 52            |
|                         | 3/2+              | -1,716.6 | -2,936.9 | -3,309.3 | 31    | 31    | -6,246.2  | 62            |
|                         | 3/2-              | -1,732.1 | -2,967.8 | -3,340.3 | 0     | 0     | -6,308.1  | 62            |

# $\Xi(1820)^{-}(L_{\text{max}}=0)$ crossed channel $\Xi$

Table 6.8: Results of the different generated and fitted hypothesis for  $\Xi (1820)^-$  including the reaction  $\bar{p}p \to \bar{\Lambda}$  (1890) $\Lambda$ . The chosen maximum orbital momentum is  $L_{\text{max}} = 0$ .

| generated<br>hypothesis | fit<br>hypothesis | NLL      | BIC      | AIC      | ΔΒΙϹ  | ΔΑΙС  | AIC + BIC | $N_{\rm par}$ |
|-------------------------|-------------------|----------|----------|----------|-------|-------|-----------|---------------|
|                         | 1/2+              | -1,320.8 | -2,513.6 | -2,609.7 | 0     | 0     | -5,123.3  | 16            |
| 1 /2+                   | 1/2-              | -1,318.3 | -2,508.6 | -2,604.7 | 5.0   | 5.0   | 5,113.3   | 16            |
| 1/2+                    | 3/2+              | -1,318.5 | -2492.8  | -2600.9  | 20.8  | 8.8   | -5,093.7  | 18            |
|                         | $3/2^{-}$         | -1,316.5 | -2,488.8 | -2,596.9 | 24.8  | 12.8  | -5,085.7  | 18            |
|                         | 1/2+              | -1,531.5 | -2,935.0 | -3,031.1 | 12.1  | 12.8  | -5,966.1  | 16            |
| 1/2-                    | 1/2-              | -1,537.6 | -2,947.1 | -3,043.2 | 0     | 0.7   | -5,990.3  | 16            |
| 1/2                     | 3/2+              | -1,533.9 | -2,923.7 | -3,301.9 | 23.4  | 12    | -5,955.6  | 18            |
|                         | 3/2-              | -1,539.9 | -2,935.8 | -3,043.9 | 11.3  | 0     | -5,979.7  | 18            |
|                         | 1/2+              | -1,448.8 | -2,769.6 | -2,865.7 | 67.1  | 79.1  | -5,635.3  | 16            |
| 3/2+                    | $1/2^{-}$         | -1,453.9 | -2,779.7 | -2,875.8 | 57.0  | 69.0  | -5,655.5  | 16            |
| 3/2                     | 3/2+              | -1,490.4 | -2,836.7 | -2,944.8 | 0     | 0     | -5,781.5  | 18            |
|                         | 3/2-              | -1,489.4 | -2,834.8 | -2,942.9 | 1.9   | 1.9   | -5,777.7  | 18            |
|                         | 1/2+              | -1,492.3 | -2,856.4 | -2,952.5 | 200.6 | 213.5 | -5,808.9  | 16            |
| 3/2-                    | 1/2-              | -1,510.5 | -2,892.9 | -2,889.0 | 164.1 | 176.1 | -5,781.9  | 16            |
| 3/2                     | 3/2+              | -1,594.7 | -3,045.2 | -3,153.3 | 11.8  | 11.8  | -6,198.5  | 18            |
|                         | 3/2-              | -1,600.5 | -3,057.0 | -3,165.1 | 0     | 0     | -6,222.1  | 18            |