Update on lifetime measurements of MCP-PMTs and status of afterglow and saturation measurements D. Miehling, M. Böhm, S. Krauss,

A. Lehmann

PANDA-Meeting 19/3 GSI, November 5, 2019

NATURWISSENSCHAFTLICHE FAKULTÄT

Parameters of lifetime measurements

- Goal: Simultaneous measurement of different MCP-PMTs under similar conditions as in the PANDA-DIRCs
- Constant illumination with 1 MHz single photons
 - All MCP-PMTs in same light spot
 - Permanent monitoring of integrated anode charge
- QE measurement:
 - Every few weeks:
 - Wavelength spectrum with Xenon arc lamp (75 W) and a monochromator ($\Delta\lambda$ = 2 nm, 250 nm 800 nm)
 - Also measuring gain and dark counts
 - Every several months:
 - Surface scans with picosecond laser (372 nm, spot size: ø~0.5-1 mm)

Lifetime setup

7

- Pulsed LED inside aluminum Box
- Thorlabs engineered diffuser
 - In front of LED to get homogeneous light spot on sensors
- Holding construction for up to 16 sensors all illuminated by same LED
- Cable management behind sensors

Data from October 11, 2019 Illumination Overview QE (all sensors with ALD)

Two ALD layers

Film in front of first MCP

9002108 removed on October 11 2019

QE scans of new Hamamatsu 2 inch ALD devices

- later prototypes tend to show better performance
- measurement still ongoing

PANDA-Meeting 19/3 - November 5, 2019 Daniel Miehling

Covered

QE scans of Photonis 9001393-URD (2 ALD layers)

• 2 ALD layers

Not covered

• No damage visible @25 C/cm² (~50 years of PANDA)

QE scans of Photonis 9002108 (ALD)

- Aging starting from the center
- Not illuminated side less and later damaged

PANDA-Meeting 19/3 – November 5, 2019 Daniel Miehling

- Probably caused by feedback ions
- ALD-coating by Photonis (and not Arradiance)
- removed on October 11 2019

12

Afterglow

Reminder: Afterglow

- After illuminating MCP-PMTs with high intensity light the darkcount rate is significantly increased
- The count rate decays within several seconds minutes
- This effect can also be observed during our rate stability measurements:

Afterglow

- Afterglow comes from photons from the MCP itself after high illumination
- Afterglow depends on duration and intensity of illumination and gain of the MCP-PMT
- \rightarrow for more information see Merlins talk at DIRC2019
- measurements with a lot of sensors were done
- divide afterglow current (at ~ EDD rates) by anode current to get a feeling of how much the sensors shows this effect

	JS0035	YH0250	JS002 7	KT0002	9001332	9001341	9001393	9001394	9002108	9002150	9001165	
afterglow	3e-05	4e-03	-	<6e-06	<3e-05	1e-05	4e-05	1e-05	2e-06	1e-05	1e-04	6e-05

 good news: no problem for MCP-PMTs for the Barrel DIRC rates, only Hamamatsu YH-series for EDD could cause issues

Gain recovery

- Antamanova et al. observed (2018 JINST 13 T09001)
 - After high illumination the gain is lower than before
 - Only in ALD tubes, but not in non-ALD tubes
- We can reproduce this effect for many tubes, but not for all

Gain saturation and recovery time

- effects seem to be correlated with ratestability, higher ratestability reduces these effects
- the effects are in the order of a few % (for example the 9001341 loses 5% gain in 5 minutes @700 kHz Photons/cm²)
- more investigations needed to determine the equilibrium
- good news again: no problem for sensors at Barrel DIRC rates, for EDD one should keep this in mind

18

Dependence on number of photoelectrons

- afterglow, ratestability, saturation and recovery time depend on the number of photoelectrons per laser pulse
- both plots with Photonis 9001341 and up to ~4µA anode current, but left with 10e4 gain and 1200 pe, right with 10e6 gain and 3pe and higher laser frequencies
- left the number of photons per time intervall is very high for a short time

Gain saturation and recovery time

- "bad" sensors: YH0250, JS0027, 9001341, 9002108,
- "good" sensors: JS0035, KT0002, 9002150, 9001165, 9001340
- "very good" sensors: 9001332, 9001393, 9001394
- "bad" means one can see a effect at ~5pe per pulse and at ~1000pe per pulse
- "good" means one can see a effect only at ~1000pe per pulse
- "very good" means no effect even at ~1000pe per pulse
- good news: no problem for MCP-PMTs for the Barrel DIRC rates, only Hamamatsu YH-series for EDD could cause issues

Summary

- Requirements: > 5 C/cm² at 10⁶ gain (50% duty cycle, 10 years)
- Photonis
 - Best sensor at 25 C/cm² without any sign of cathode damage
 - New sensor already damaged at 1.2 C/cm², now at 1.6 C/cm² only ~3% QE left in the hole

- Hamamatsu:
 - Later produced (higher serial number) 2 inch tubes tend to have better performance
 - JS0035 reached 5 C/cm² as first 2 inch tube (now at almost 11C/cm²)
 - JS0027 (almost) reached
 5 C/cm² as well
- afterglow, saturation and recovery time should be no problems for Barrel DIRC, but should be further investigated for EDD

Bundesministerium für Bildung und Forschung

Thank you for your attention!

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

GEFORDERT VOM

Bundesministerium für Bildung und Forschung

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

NATURWISSENSCHAFTLICHE FAKULTÄT

Afterglowing – further investigations with 9001393 with TRB

- Illuminating the full MCP-PMT PC several seconds with ~1 p.e./Pixel, then turn off the laser and measure the count rate for 300 s
- Higher illumination intensity (laser frequency) results in more afterglow
- Observed up to 10% afterglow events compared to the laser rate
- Longer illumination intensity results in more afterglow
- Turning off the HV during the decay has no effect on the number of afterglow events
- Amount of afterglow events depends on the voltage applied (gain) during the illumination

Merlin Böhm - DIRC 2019 - Rauischholzhausen - 9/11

50

100

Afterglowing - photons or electrons?

- Measured two facing MCP-PMTs, once with the illuminated MCP-PMT turned on and once turned off
- Observe the count rates of the control MCP-PMT
- Count rates of the control MCP-PMT are higher when the illuminated MCP-PMT has been turned on
- ->Afterglow effect must be based on Photons

150

200

250

300

Time [s]

Illuminated MCP

(1394)