

MINISTERUL CERCETĂRII ȘI INOVĂRII

High time resolution, two-dimensional position sensitive MSMGRPC for high energy physics experiments

M. Petris, D. Bartos, M. Petrovici, L. Radulescu, V. Simion IFIN-HH Bucharest

> J. Frühauf GSI Darmstadt

I. Deppner, N. Herrmann Heidelberg University

Outline

Motivation – high counting rate, high multiplicity experiments,

(e.g. CBM@FAIR, Darmstadt ->TOF inner wall)

SMSMGRPC with a high granularity and impedance matching to FEE

▶ Performance in the in-beam tests in triggered and trigger-less mode operation

Conclusions and Outlook

Experiments exploring dense QCD matter

CBM experiment @ SIS100/FAIR

CBM physics goal: explore the QCD phase diagram at high net baryon densities.

Opens up new possibilities!

- ✓ Electromagnetic observables, charm production
- High statistics and good systematics on hadronic observables: multi-strange hyperons, collective flow, fluctuations
- New (exotic) observables: hypernuclei, strange states.
 CBM Collaboration, Eur. Phys. J. A (2017) 53: 60

CBM: is a high rate experiment!

- Fast, radiation hard detectors and front-end electronics
- Novel readout system
 - Free-streaming readout,
 - detector hits with time stamps
 - 4-D (space+time) event reconstruction
- High speed data acquisition & performance computing farm for on-line event selection

CBM – TOF requirements

CBM-ToF Requirements

- > Full system time resolution $\sigma_{_{\rm T}} \sim 80 \text{ ps}$
- Efficiency > 95%
- **>** Rate capability \leq 30 kHz/cm²
- Polar angular range 2.5° 25°
- Active area of 120 m²
- ➢ Occupancy < 5%</p>
- Low power electronics (~120.000 channels)
- Free streaming data acquisition CBM Collaboration, "CBM – TOF Technical Desing Report", October 2014

Detectors with different rate capabilities are needed as a function of polar angle

Our R&D activity addresses the CBM-TOF inner wall:

- highest counting rate
- highest granularity
- ~15 m^2 active area

Double stack, strip readout, multigap, timing RPC concept - MSMGRPC

Particle rate[kHz/cm²]

Counter architecture:

v 300r

°Ë 280

ដ៍ 260

240

220

200

180

160

140

120 100

80

60

40

20

-3

100

90

80

70

60

50

40

30

20

10

Time Resolution (ps)

Electrodes: 0.7 mm low resistivity (~10¹⁰Ωcm) Chinese glass Gap size: 140 µm thickness Symmetric two stack structure: 2 x 5 gas gaps Strip geometry for both readout and high voltage electrodes

Differential strip readout 2.54 mm pitch = 1.1 mm(w) + 1.44 mm (g)100 Ω transmission line impedance Active area: 46 (strip length) x 180 mm^2

7.4 mm strip pitch = 5.6 mm w + 1.8 mm g Differential readout, 50 Ω impedance Active area: 96 (strip length) x 300 mm²

Performance in multi-hit environment

- ✓ Active area 200 (strip length) x 266 mm²
- ✓ Resistive electrodes: 1 mm, $\sim 10^{10} \Omega$ cm Chinese glass
- ✓ Pitch=2.16 mm (w) +2.04 mm (g) = 4.2 mm
- Differential readout, 100 Ω impedance
- ✓ Anode architecture: Cu strips between two FR4 layers of 0.25 mm

CERN SPS, February 2015 13A GeVAr on Pb target

FEE based on PADI chip (CBM-TOF Collaboration) (IEEE Trans. Nucl. Sci. 61 (2014), 1015 DAQ: FPGA TDC (GSI Scientific Report 2014 (2015), 121 + TRB3 data hubs (http://trb.qsi.de/)

Δ

Hit multiplicity (RPC2013)

6

8

Goal – compatibility with PADI FEE developed within CBM-TOF Collaboration

100

50

Λ

10

CERN SPS, February 2015, 13 GeV/u Ar on Pb target

Mariana Petris, EPS-HEP2019, 10 - 17 July 2019, Ghent, Belgium

0

0

Method to adjust the signal transmission line impedance in MSMGRPCs Simulated signals

- The overlapped readout strips and the materials in between define a signal transmission line (STL)
- STL impedance depends on the readout strip width and the properties of the material layers in between
- APLAC software used for impedance estimations

Air

Honeycom b

-HV

Input/Output signals are simulated using APLAC for different values of the readout strip width

Κ

If $R = Z_0 = Z_L$ the transmission line is matched; $Z_0 =$ characteristic impedance of a transmission line $Z_L =$ load resistor connected to the transmission line R = internal resistance of the pulse generator

No significant signal loss occurs due to the narrow readout strip in comparison with the HV one

D. Bartos et al. Romanian Journal of Physics 63, 901 (2018)

RPC2015DS prototype - strip impedance tuned through the readout strip width

✓ Symmetric two stack structure: 2 x 5 gaps

- ✓ Active area 96 x 300 mm2
- ✓ Gas gap thickness: 140 µm thickness
- ✓ Readout electrode = 40 strips
- ✓ Differential readout
- ✓ Resistive electrodes: low resistivity glass

Goal – perfect matching of the impedance of the signal transmission line to the imput impedance of the FEE, in order to reduce the amount of fake information resulted from reflections.

> Simulations predicted ~99 Ω impedance for 1.3 mm readout and 5.6 mm high voltage strip widths

Readout electrode: 7.2 mm pitch= 1.3 mm width + 5.9 mm gap – define impedance High Voltage electrode: 7.2 mm pitch= 5.6 mm width + 1.6 mm gap – define granularity

In-beam test using a triggered DAQ

CERN-SPS Pb beam of 30A GeV on a Pb target

Gas mixture: $85\%C_2H_2F_4 + 5\%$ iso- $C_4H_{10} + 10\%SF_6$

Experimental set-up – ~3.0 relative to the beam line

- RPC2015 2 MRPCs
 - SS. 10.1 mm strip pitch (see next slide) 28 operated strips out of 28/RPC 100% active area
 - DS. 7.2 mm strip pitch (see next slide) 32 operated strips out of 40/RPC 80% active area
- RPC2012 4 MRPCs 32 operated strips/RPC out of 40/RPC 80% active area
- RPCRef 1 MRPC 64 operated strips out of 72/RPC 89% active area
- FEE based on PADI chip (CBM-TOF Collaboration)
- Triggered DAQ based on FPGA TDCs & TRB3 data hub

Efficiency and time resolution in high multiplicity environment

M. Petris et al., Nuclear Inst. And Meth. A 920 (2019), 100.

Free - streaming readout

CBM-TOF setup: GSI – Darmstadt, IFIN-Bucharest, Uni Heidelberg,

Uni Tsinghua – Beijing, USTC Hefei

readout: ~ 500 Channels with a new readout-chain based on:

- PADI + GET4 TDC (https://wiki.gsi.de/pub/EE/GeT4/get4.pdf)

- DAQ: DPB (Data Processing Board) + FLIB (First Level Interface Board)

The influence of the readout scheme on the slight lower efficiency is under investigation

MSMGRPC2018 prototype for the CBM-TOF highest granularity zone

Goal – Electronic channels cost optimization

Prototype assembling

<10 000 part/ft3 clean room for MSMGRPC assembling

In-house electronics and cosmic – ray test of MGMSRPC2018 prototype

dedicated MSMGRPC test laboratory

	$\mathbf{I}_{\mathrm{dark}}$	Dark rate
RPC1	< 1 nA	0.43 Hz/cm ²
RPC2	< 1 nA	0.46 Hz/cm²

Plastic Scintillator + 2PM

for each RPC:

- 16 operated strips, readout at both ends
- (16 x 0.902 cm) x 6 cm = 86.6 cm² operated area
- $HV = \pm 5500 V$
- NINO FEE + CAEN TDCs
- NINO Threshold = 160 mV
- Gas mixture: $90\% C_2 H_2 F_4 + 10\% SF_6$

Tests for reflections

Pulser test

Cosmic – ray signal

In-house cosmic – ray test of MSMGRPC2018 prototype

March 2019 in-beam test in the mCBM setup @ SIS18/GSI

Beam: ¹⁰⁷Ag of 1.6 GeV/u on Au target Readout: PADIX + GET4, free-streaming DAQ

- Threshold scan @ given high voltage
- High voltage scan at given threshold
- High rate scan at given high voltage and threshold:
- from low rate: $I_{RPC} = 0.15 \ \mu A$ to 'high rate': $I_{RPC} = 3.5 \ \mu A$

Preliminary results of mCBM beam time

 $\sigma_{counter} = 55 \text{ ps}$

Cbm-TOF Inner Wall Design

CBM-TOF inner zone

- \sim 15 m² active area
- 12 modules of 4 types (M1, M2, M3, M4)
- 470 MGMSRPC counters with 0.9 mm strip pitch,
- of 3 types (60 mm (1a), 100 mm (1b) and 200 mm (1c) strip length)
- 30 080 readout channels

Cbm-TOF Inner Wall Design

Module M1

Conclusions & Outlook

- A method to tune the MSMGRPC signal transmission line impedance such to match the input impedance of the corresponding front-end electronics was developed, exploiting the MSMGRPC architecture developed in our group.
 The required matching can be achieved independent on the adjustment of the MSMGRPC granularity.
- Performance of the prototypes based on this method was confirmed by the in-beam test results.
- Inner-zone of the CBM-TOF subsystem will be based on such architecture.
- > Assembling of a full size module will start in the near future.

Back-up slides

mCBM@SIS18

• a CBM full system test 2018 – 2021 in high-rate nucleus-nucleus collisions at GSI/FAIR

- test of final detector prototypes
- free streaming data transport to a computer farm
- online reconstruction and event selection
- offline data analysis