Anna Senger for the CBM collaboration

HADRON IDENTIFICATION WITH THE MUON SETUP OF CBM

Outline

- Motivation
- CBM detector configurations
- Simulations and reconstruction package
- Muon setup:
 - di-muons
 - hadron reconstruction without PID
 - hadron PID behind muon system
 - preliminary results of hyperon reconstruction using PID
- Conclusions
- Next steps

PID ≡ particle identification

Motivation

- A substantial part of the future CBM beam time will be devoted to muon measurements, which can be performed with higher reaction rates than with the detector configuration for electron measurements.
- The overall statistics for multi-strange hyperons would be strongly enhanced, if they could be measured also with the muon setup.
- The simultaneous measurement of hadrons and dileptons, both for the electron and the muon setup, allows for consistency checks of the dilepton results.

CBM detectors for SIS100

Micro-Vertex Detector (MVD) primary and secondary vertex reconstruction with high precision

Silicon Tracking System (STS)

momentum reconstruction

track, vertex and

Muon Chamber System (MUCH) muon identification

Ring Imaging Cherenkov elect detector (RICH)

electron identification

Transition Radiation Detector (TRD)

global tracking, electron identification

Time of Flight Detector (TOF) electron and neutral particle identification

Projectile Spectator Detector (PSD) reaction plane and centrality determination

CBM setups

Hadron setup: STS+TOF Observables:

- hadrons
- hypernuclei

 Electron setup: (MVD)+STS+RICH+TRD+TOF+PSD Observables:

- dielectrons
- hadrons
- hypernuclei

 Muon setup: STS+MUCH+TRD+TOF+(PSD) Observables:

- dimuons
- hadrons ?

Simulations and software

CBMROOT

software package for simulation, reconstruction, and analysis based on the ROOT software toolkit

- UrQMD, PHSD and PLUTO as primary particle generators
- GEANT3/4 simulation software for transport of particles through materials
- Kalman Filter Particle Package (KFPP) for particle reconstruction

Detector implementation

Geometry of detectors and support structures from technical drawings

 Digitization scheme from detector and electronics tests

 Hit reconstruction from mathematical models

Electron setup

Hadron identification in electron setup

Low-mass vector mesons

dN/dM_{ee} (1/GeV/c²) 10-1 10-2 inmed. p QGP rad. 10⁻³ 10-4 10⁻⁵ 10-6 2.5 0.5 1.5 M_{ee} (GeV/c²) from di-electron analysis task

Electron PID:

- MVD hit topology: rejection of closed tracks (γ→e⁺e⁻), vertex reconstruction
- STS track and momentum reconstruction
- RICH electron-pion separation via ring radius
- TRD electron-pion separation via energy loss
- TOF electron identification via mass distribution

central UrQMD Au+Au events at 8 A GeV/c

KF Particle Package (KFPP)

Pictures: Maxim ZYZAK

Muon setup

Configurations

for beam energies up to 4 AGeV for beam energies above 4 AGeV

for charmonium measurements

TRD

magnet

with

STS

MUCH

TOF

MUCH: 4 GEM stations absorbers: 60 cm C (20+20+30+100) cm Fe

Muon reconstruction

Muon PID

- STS track, vertex and momentum reconstruction
- MUCH-TRD track extrapolation
- TOF muon identification

MC acceptance STS+TOF

Condition: MC track in STS has MC point in TOF % 10² MC acceptance, muons 10 ********** ********** 10^{-1} background 10^{-2} 10⁻³-2 3 5 10 4 6 7 8 9 0 P, GeV/c

central UrQMD Au+Au events at 12 A GeV/c

central UrQMD Au+Au events

Invariant mass spectra

MUCH: 4 GEM stations absorbers: 60 cm C + (20+20+30+100) cm Fe

from di-muon analysis task

Hadron reconstruction in STS without TOF PID

Hyperon reconstruction in STS without TOF

5×10⁶ central UrQMD Au+Au events at 12 A GeV/c

$_{\Lambda}{}^{3}H \rightarrow {}^{3}He + \pi^{-} PID in STS$

central UrQMD Au+Au events at 2 A GeV/c + light fragments

PID in STS:

- all negative particles are π⁻
- positive particles with selected dE/dx are ³He (see picture)

Picture: Maxim TEKLISHYN

$_{\Lambda}{}^{3}H \rightarrow {}^{3}He + \pi^{-}$ reconstruction in STS

 5×10^{6} central UrQMD Au+Au events at 12 A GeV/c $+_{\Lambda}{}^{3}$ H from thermal generator

reconstruction efficiency
9.5%

branching ratio: H. Kamada et al., Phys. Rev., Ser. C 57, 1595 (1998) multiplicity : J. Steinheimer et. all, Phys. Lett. B714, 85, (2012)

$^{4}\text{He} \rightarrow {}^{3}\text{He} + \pi^{-} + p$

central UrQMD Au+Au events at 2 A GeV/c + light fragments

PID in STS:

- all negative particles are π⁻
- positive particles ³He or p (see picture)

$_{\Lambda}{}^{4}\text{He} \rightarrow {}^{3}\text{He} + \pi^{-} + p$ reconstruction in STS

 5×10^{6} central UrQMD Au+Au events at 12 A GeV/c $+_{\Lambda}^{4}$ He from thermal generator

reconstruction efficiency5.7%

branching ratio: H. Kamada et al., Phys. Rev., Ser. C 57, 1595 (1998) multiplicity : J. Steinheimer et. all, Phys. Lett. B714, 85, (2012)

Hadron identification with TOF behind MUCH

MC acceptance

central UrQMD Au+Au events at 12 A GeV/c

25

4π MC acceptance

central UrQMD Au+Au events at 12 A GeV/c

5×10⁶ central UrQMD Au+Au events at 12 A GeV/c

Hadron PID in TOF

Hadron PID in TOF

5×10⁶ central UrQMD Au+Au events at 12 A GeV/c

TOF PID efficiency for particles passing MUCH

5×10⁶ central UrQMD Au+Au events at 12 A GeV/c

29

inclusive the tracking and matching efficiency

Ω-background suppression strategy

5×10⁶ central UrQMD Au+Au events at 12 A GeV/c

tracks in STS without TOF hit – without PID

tracks with TOF hit –

Ω -background suppression with PID

5×10⁶ central UrQMD Au+Au events at 12 A GeV/c

p PID in STS (?)

central UrQMD Au+Au events at 2 A GeV/c + light fragments

Picture: Maxim TEKLISHYN

$\Omega\text{-}background\ suppression$ with PID in STS and TOF

5×10⁶

central UrQMD

Au+Au events

at 12 A GeV/c

Conclusions

- Hypernuclei can be reconstructed without TOF identification using dE/dx information from STS
- Hyperons can be identified by the STS without TOF during muon measurements with reduced S/B. Their yield can be used for the physics analysis, and also as consistency check between muon and electron measurements

 The TOF PID for particles passing MUCH helps to suppress background

Next steps

- Hyponuclei reconstruction with muon setup: simulations with DCM-QGSM-SMM as input and GEANT4 for transport
- Implementation of TOF PID for muon setup in standard KFPP
- Use TRD dE/dx separation for light fragments and background suppression

Electron setup

Picture: Oleg GOLOSOV

35

Particle identification in TOF in muon and electron setups

5×10⁶ central UrQMD Au+Au events at 12 A GeV/c

muon setup

electron setup

Predictions for J/ψ (SIS100)

W. Cassing, E. Bratkovskaya, A. Sibirtsev Nucl. Phys. A 691 (2001) 753 J. Steinheimer, A. Botvina, M. Bleicher arXiv:1605.03439v1

HSD calculation

http://fias.uni-frankfurt.de/~phsd-project/HSD

UrQMD calculation including subthreshold charm production via $N^* \rightarrow \Lambda_c + D$ and $N^* \rightarrow N + J/\psi$

Central Au+Au collisions 10 A GeV : $M_{J/w} = 1.7 \cdot 10^{-7}$

Central Au+Au collisions 10 A GeV: $M_{J/\psi} = 5.10^{-6}$

Hypernuclei production in A+A Collisions *central UrQMD Au+Au events at 12 A GeV/c*

A. Andronic et al., Phys. Lett. B697 (2011) 203

J. Steinheimer et al., arXiv:1203.2547 (2012)

