Anna Senger for the CBM collaboration

HADRON IDENTIFICATION WITH THE MUON SETUP OF CBM

$8^{\text {th }}$ International Conference on New Frontiers in Physics (ICNFP 2019)

Outline

- Motivation
- CBM detector configurations
- Simulations and reconstruction package
- Muon setup:
- di-muons
- hadron reconstruction without PID
- hadron PID behind muon system
- preliminary results of hyperon reconstruction using PID
- Conclusions
- Next steps

PID \equiv particle identification

Motivation

- A substantial part of the future CBM beam time will be devoted to muon measurements, which can be performed with higher reaction rates than with the detector configuration for electron measurements.
- The overall statistics for multi-strange hyperons would be strongly enhanced, if they could be measured also with the muon setup.
- The simultaneous measurement of hadrons and dileptons, both for the electron and the muon setup, allows for consistency checks of the dilepton results.

CBM detectors for SIS100

Micro-Vertex Detector (MVD)
primary and secondary vertex reconstruction with high precision
track, vertex and momentum reconstruction

Muon Chamber System (MUCH)

Ring Imaging Cherenkov detector (RICH)

Transition Radiation Detector (TRD)

Time of Flight Detector (TOF)

Projectile Spectator Detector (PSD)
muon identification
electron identification
global tracking, electron identification
electron and neutral particle identification
reaction plane and centrality determination

CBM setups

- Hadron setup: STS+TOF

Observables:

- hadrons
- hypernuclei
- Electron setup: (MVD)+STS+RICH+TRD+TOF+PSD Observables:
- dielectrons
- hadrons
- hypernuclei
- Muon setup: STS+MUCH+TRD+TOF+(PSD)

Observables:

- dimuons
- hadrons ?

Simulations and software

- CBMROOT
software package for simulation, reconstruction, and analysis based on the ROOT software toolkit
- UrQMD, PHSD and PLUTO as primary particle generators
- GEANT3/4 simulation software for transport of particles through materials
- Kalman Filter Particle Package (KFPP) for particle reconstruction

Detector implementation

- Geometry of detectors and support structures from technical drawings
- Digitization scheme from detector and electronics tests
- Hit reconstruction from mathematical models

Electron setup

PSD UW

Hadron identification in electron setup

1. TOF hadron identification
2. TRD-TOF d-He separation
3. RICH electron identification

Pictures: Iouri VASSILIEV

Low-mass vector mesons

Electron PID:

- MVD - hit topology: rejection of closed tracks ($\mathrm{Y} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$), vertex reconstruction
- STS - track and momentum reconstruction
- RICH - electron-pion separation via ring radius
- TRD - electron-pion separation via energy loss
- TOF - electron identification via mass distribution

KF Particle Package (KFPP)

Pictures: Maxim ZYZAK

Results of KFPP

5×10^{6} central UrQMD Au+Au events at $10 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$

$\mathrm{m}_{\mathrm{inv}}\left\{\overline{\mathrm{p}} \pi^{+}\right\}\left[\mathrm{GeV} / \mathbf{c}^{2}\right]$

10^{11} central UrQMD Ni+Ni events at $15 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$

$\mathbf{m}_{\text {inv }}\left\{{ }^{3} \mathrm{He} \pi^{-}\right\}\left[\mathbf{G e V} / \mathbf{c}^{2}\right]$

Configurations

for beam energies up to 4 AGeV
for beam energies above 4 AGeV
for charmonium measurements

Muon reconstruction

Muon PID

- STS - track, vertex and momentum reconstruction
- MUCH-TRD - track extrapolation
- TOF - muon identification

MC acceptance STS+TOF

Condition: MC track in STS has MC point in TOF

Invariant mass spectra

MUCH:
4 GEM stations absorbers:
$60 \mathrm{~cm} \mathrm{C}+(20+20+30+100) \mathrm{cm} \mathrm{Fe}$

from di-muon analysis task

Hadron reconstruction in STS without TOF PID

$\Lambda^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\pi^{-}$PID in STS

PID in STS:

- all negative particles are π^{-}
- positive particles with selected dE/dx are ${ }^{3} \mathrm{He}$ (see picture)

Picture: Maxim TEKLISHYN

$\Lambda^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\pi^{-}$ reconstruction in STS

reconstruction efficiency 9.5\%
branching ratio: H. Kamada et al., Phys. Rev., Ser. C 57, 1595 (1998) multiplicity : J. Steinheimer et. all, Phys. Lett. B714, 85, (2012)

$\wedge^{4} \mathrm{He} \rightarrow{ }^{3} \mathrm{He}+\pi^{-}+\mathrm{p}$

PID in STS:

- all negative particles are π^{-}
- positive particles ${ }^{3} \mathrm{He}$ or p (see picture)

Picture: Maxim TEKLISHYN

$\Lambda^{4} \mathrm{He} \rightarrow{ }^{3} \mathrm{He}+\pi^{-}+p$ reconstruction in STS

reconstruction efficiency 5.7\%
branching ratio: H. Kamada et al., Phys. Rev., Ser. C 57, 1595 (1998) multiplicity : J. Steinheimer et. all, Phys. Lett. B714, 85, (2012)

Hadron identificatia TOF behind MUCH

MC acceptance

pions

protons

kaons

4π MC acceptance

Condition: primary track has MC points in all detectors

Hadron PID in TOF

Hadron PID in TOF

TOF PID efficiency
 for particles passing MUCH

inclusive the tracking and matching efficiency

』-background suppression

 strategy- tracks in STS without TOF hit - without PID
- tracks with TOF hit

ת-background suppression with PID

Picture: Maxim TEKLISHYN

』-background suppression with PID in STS and TOF

Conclusions

- Hypernuclei can be reconstructed without TOF identification using dE/dx information from STS
- Hyperons can be identified by the STS without TOF during muon measurements with reduced S/B. Their yield can be used for the physics analysis, and also as consistency check between muon and electron measurements
- The TOF PID for particles passing MUCH helps to suppress background

Next steps

- Hyponuclei reconstruction with muon setup: simulations with DCM-QGSM-SMM as input and GEANT4 for transport
- Implementation of TOF PID for muon setup in standard KFPP
- Use TRD dE/dx separation for light fragments and background suppression

Electron setup

Picture: Oleg GOLOSOV

Backup

Particle identification in TOF in muon and electron setups

muon setup

Predictions for J/ ψ (SIS100)

W. Cassing, E. Bratkovskaya, A. Sibirtsev

Nucl. Phys. A 691 (2001) 753
J. Steinheimer, A. Botvina, M. Bleicher arXiv:1605.03439v1

HSD calculation

http://fias.uni-frankfurt.de/~phsd-project/HSD

Central Au+Au collisions $10 \mathrm{~A} \mathrm{GeV}: \mathrm{M}_{\mathrm{J} / \psi}=\underline{1.7 \cdot 10^{-7}}$

UrQMD calculation
including subthreshold charm production via $\mathrm{N}^{*} \rightarrow \Lambda_{\mathrm{c}}+\mathrm{D}$ and $\mathrm{N}^{*} \rightarrow \mathrm{~N}+\mathrm{J} / \psi$

Central $\mathrm{Au}+\mathrm{Au}$ collisions $10 \mathrm{~A} \mathrm{GeV}: \mathrm{M}_{\mathrm{J} / \psi}=\underline{5 \cdot 10^{-6}}$

Hypernuclei production in A+A collisions
 central UrQMD Au+Au events at $12 \mathrm{~A} \mathrm{GeV} / \mathrm{c}$

