Lattice QCD and the photon emission rate of the quark-gluon plasma

Harvey Meyer

EMMI Physics Day, GSI, 19 November 2019

Outline

Part 1: numerics

Probing the photon rate: a calculation in lattice QCD with dynamical up and down quarks.

Part 2: theory aspects

- Interpretation of the vector spectral functions for spacelike momenta;
- Dispersion relation of momentum-space Euclidean correlators at fixed, vanishing photon virtuality.

Work done in collaboration with Marco Cè, Tim Harris, HM, Aman Steinberg, Arianna Toniato; see 1710.07050 (LAT2017) and 1807.00781 (EPJA).

Lattice QCD and vector correlators

Gluons:
$$U_{\mu}(x)=e^{iag_0A_{\mu}(x)}\in SU(3)$$
 'link variables'

Quarks: $\psi(x)$ 'on site', Grassmann

Gauge-invariance exactly preserved.

Imaginary-time path-integral representation of QFT (Matsubara formalism).

Imaginary-time vector correlators $(\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} = 2\text{diag}(1, -1, -1, -1))$,

$$G^{\mu\nu}(x_0, \boldsymbol{k}) = \int d^3x \ e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \operatorname{Tr}\left\{\frac{e^{-\beta H}}{Z(\beta)} j^{\mu}(x) j^{\nu}(0)\right\}, \qquad j^{\mu} = \sum_f Q_f \,\bar{\psi}_f \gamma^{\mu} \psi_f$$

Spectral representation (u is a real four-vector):

$$u_{\mu}G^{\mu\nu}u_{\nu}(x_0, \mathbf{k}) = \int_0^{\infty} \frac{d\omega}{2\pi} \underbrace{\frac{(u_{\mu}\rho^{\mu\nu}u_{\nu})(\omega, \mathbf{k})}{\sinh(\beta\omega/2)}}_{>0} \cosh[\omega(\beta/2 - x_0)].$$

Physical significance of the spectral function for $K^2 \ge 0$

▶ Rate of dilepton production per unit volume plasma:

$$d\Gamma_{\ell^+\ell^-}(\mathcal{K}) = \alpha^2 \frac{d^4 \mathcal{K}}{6\pi^3 \mathcal{K}^2} \frac{-\rho^{\mu}_{\mu}(\mathcal{K})}{e^{\beta \mathcal{K}^0} - 1}$$

▶ Rate of photon production per unit volume plasma:

$$d\Gamma_{\gamma}(\mathbf{k}) = \alpha \frac{d^3k}{4\pi^2 k} \frac{-\rho^{\mu}_{\mu}(k,k)}{e^{\beta k} - 1}.$$

More on this later.

Alternative expression for the photon rate

- current conservation: $\omega^2 \rho^{00}(\omega, k) = k^i k^j \rho^{ij}(\omega, k)$.
- \Rightarrow $(\hat{k}^i\hat{k}^j\rho^{ij}-\rho^{00})/\omega$ has the same sign as $\mathcal{K}^2\equiv\omega^2-k^2$, and vanishes at $\omega=k$ (photon kinematics).

Therefore, introduce $(k \equiv |\boldsymbol{k}|, \quad \hat{k}^i = k^i/k)$

$$\rho(\omega, k, \lambda) = (\delta^{ij} - \hat{k}^i \hat{k}^j) \rho^{ij} + \lambda (\hat{k}^i \hat{k}^j \rho^{ij} - \rho^{00}).$$

In particular,

$$\rho(\omega,k,\lambda) = \left\{ \begin{array}{ll} -\rho^{\mu}{}_{\mu}(\omega,k) = 2\rho_T + \rho_L & \lambda = 1 \\ (\delta^{ij} - 3\hat{k}^i\hat{k}^j)\rho^{ij} + 2\rho^{00} = 2(\rho_T - \rho_L) & \lambda = -2. \end{array} \right.$$

Photon rate can be written $(\forall \lambda)$

$$d\Gamma_{\gamma}(\mathbf{k}) = \alpha \frac{d^3k}{4\pi^2 k} \frac{\rho(k, k, \lambda)}{e^{\beta k} - 1}.$$

Choosing a favourable λ : weak and strong coupling spectral fcts

Spatial momentum $k = \pi T$:

Spatial momentum $k=\pi T/2$: At strong coupling, hydro works:

$$-2(\rho_T - \rho_L)(\omega, k)/\omega \approx \frac{4\chi_s Dk^2}{\omega^2 + (Dk^2)^2},$$

Refs: hep-th/0607237 and 1310.0164.

New NLO weak-coupling result Jackson & Laine 1910.09567

▶ at finite coupling, the kink on the light cone gets smoothened out, resulting in an $O(\alpha_s \log 1/\alpha_s)$ photon rate.

Summary: properties of $\rho(\omega, k) \equiv \rho(\omega, k, \lambda = -2) = 2(\rho_T - \rho_L)$

- ▶ non-negative for $\omega \leq k$
- $\rho(\omega,k) \stackrel{\omega \to \infty}{\sim} k^2/\omega^4$
- sum rule: $\int_0^\infty \mathrm{d}\omega \,\omega \rho(\omega,\mathbf{k}) = 0$ (so $\rho(\omega,k)$ must go negative somewhere for $\omega>k$)
- effective diffusion coefficient $D_{\rm eff}(1,k) \equiv \frac{\rho(k,k)}{4\gamma_s k} \propto$ photon rate.

Results from Arnold, Moore, Yaffe hep-ph/0111107 (JHEP); AdS/CFT from hep-ph/0607237.

Lattice set-up with $N_{\rm f}=2~{\rm O}(a)$ -improved Wilson fermions

$T ext{ (MeV)}$	$T/T_{ m c}$	β_{LAT}	β/a	L/a	$m_{\overline{ m MS}(2GeV)}$ (MeV)	$N_{ m meas}$
250	1.2	5.3	12	48	12	8256
"	"	5.5	16	64	"	4880
"	"	5.69	20	80	"	25000
,,	"	5.83	24	96	"	9600

• enables continuum limit at $T=250~{\rm MeV}$

- only weak dependence of observable on topological charge
- impact of long autocorrelation time on vector correlator under control.

Continuum limit 1/3

There are four independent discretizations of the $\lambda=-2$ isovector vector correlator

$$G^{\lambda=-2}(x_0, \mathbf{k}) = \left(\delta^{ij} - \frac{3k^i k^j}{k^2}\right) G^{ij}(x_0, \mathbf{k}) + 2G^{00}(x_0, \mathbf{k})$$

where $G^{\mu\nu}(x_0, \mathbf{k}) = \int d^3x \; e^{-i\mathbf{k}\cdot\mathbf{x}} \; \langle j^\mu(x)j^\nu(0) \rangle$ using both the local or exactly-conserved lattice vector current.

Project to all spatial momenta, on and off-axis, with $k\beta \leq 2\pi$.

In the chirally-symmetric phase, the matrix-elements of the O(a)-improvement counterterms are suppressed, so we perform a continuum limit in a^2/β^2 .

Static susceptibility: $\chi_s \equiv \int d^4x \langle j^0(x)j^0(0) \rangle = 0.880(9)_{\rm stat}(8)_{\rm syst} \cdot T^2$ (this quantity is unity for free massless quarks).

Continuum limit 2/3

Tree-level improvement:
$$G(x_0, \mathbf{k}) \to \frac{G_{\text{cont.t.l.}}(x_0, \mathbf{k})}{G_{\text{lat.t.l}}(x_0, \mathbf{k})}G(x_0, \mathbf{k})$$

A piecewise spline interpolation is used before taking the combined continuum limit of the four discretizations of $G(x_0, \mathbf{k})/\chi_{\rm s}$. For $x_0 = \beta/2$:

Continuum limit 3/3 using tree-level improved at $k = \pi T$

- Coarsest ensemble $N_t = 12$ is not included in the continuum extrapolation.
- ▶ In the subsequent analysis, we use the continuum-extrapolated correlator at $x_0 \ge \beta/4$.

Can the lattice distinguish a weak- from a strong-coupling $\rho(\omega,k)$?

In the "transverse minus longitudinal" channel, consider the ratio

$$R(x_0, k) \equiv \frac{16\pi}{(\beta - 2x_0)^2 k^2} \left[\frac{G(x_0, k)}{G(\beta/2, k)} - 1 \right]$$

$$= \frac{16\pi}{(\beta - 2x_0)^2 k^2} \frac{\int_0^\infty d\omega \ \rho(\omega, k) (\cosh[\omega(\beta/2 - x_0)] - 1) / \sinh(\omega\beta/2)}{\int_0^\infty d\omega \ \rho(\omega, k) / \sinh(\omega\beta/2)}$$

This observable differs by a factor ~ 1.5 between the extreme cases of AdS/CFT and non-interacting quarks. Lattice data lies in between.

Comparison with recent NLO calculation ($T=250\,\mathrm{MeV}$)

difference between continuum-extrapolated lattice data and NLO calculation is small. Figure from 1910.09567.

Padé fit ansatz for the spectral function

$$\frac{\rho(\omega,k)}{\tanh[\omega\beta/2]} = \frac{A(1+B\omega^2)}{[(\omega-\omega_0)^2+b^2][(\omega+\omega_0)^2+b^2][\omega^2+a^2]},$$

- $\rho(\omega, k) \sim 1/\omega^4$ at large ω (consistent with OPE);
- sum rule $\Rightarrow B = B(a, b, \omega_0)$;
- ▶ assume piece-wise linear dependence of (a,b,ω_0) on k^2 , i.e. locally $a(k)=a_0+a_2k^2$ etc.
- ▶ scan in the non-linear parameters $(a_0, a_2, b_0, b_2, \omega_0^{(0)}, \omega_0^{(2)})$, A chose to minimize χ^2
- accept all solutions that satisfy:
 - 1. $\rho(\omega, k) \ge 0$ for $\omega \le k$;
 - 2. p-value above 32% (using the full, regularized covariance matrix);
 - 3. "there can be no arbitrarily long relaxation times": $\min(a,b) > \min(D_{\text{AdS/CFT}}k^2, D_{\text{nert}}^{-1})$

$$D_{\text{AdS/CFT}} = \frac{1}{2\pi T}$$
, $D_{\text{pert}}^{-1} = O(\alpha_s^2)T = 0.46T$, $\alpha_s = 0.25$.

↑ Arnold, Moore, Yaffe hep-ph/0302165

Typical spectral functions resulting from the Padé fit

 All three describe the lattice data, fullfill the positivity requirement and do not have singularities too close to the real axis.

Result at $T=250\,\mathrm{MeV}$

- Near-final result. Used covariance matrix C with modest amount of regularization.
- ▶ Results very much in line with weak-coupling prediction; lattice data presently unable to exclude large values of D at momenta $k \lesssim 2.5T$.

Interpretation of the spectral function for spacelike momenta

Cross-section per unit volume for a lepton scattering on the medium through the exchange of a space-like photon ($\ell^{\mu\nu} \equiv 2(p^{\mu}p'^{\nu} + p^{\nu}p'^{\mu} - g^{\mu\nu}(p\cdot p'))$):

$$\frac{d^2\sigma}{L^3dp^{0\prime}d\Omega} \ = \ \frac{e^4(p^{0\prime}/p^0)}{32\pi^3\mathcal{K}^4}\ell_{\mu\nu}\frac{\rho^{\mu\nu}(k^0,\pmb{k})}{1-e^{-\beta k^0}},$$

with p and p' respectively the initial and final lepton momenta and k=p-p'.

More generally: vector spectral functions measure the ability of the medium to convert the energy stored in external electromagnetic fields into heat:

- ▶ Couple the plasma to a harmonic external vector potential $\mathbf{A}(t, \mathbf{x}) = \operatorname{Re}(\mathbf{A}_{\mathbf{k}}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)})$, via Hamiltonian $\Delta H = -e\int d^3x\ \mathbf{j}\cdot\mathbf{A}$.
- ▶ If energy of external electromagnetic fields: $E_{\rm e.m.} = \frac{1}{2} \int d^3x \, ({m E}^2 + {m B}^2)$,

$$\begin{split} \boldsymbol{A_k} \perp \boldsymbol{k} \ : & \frac{-1}{E_{\mathrm{e.m.}}} \frac{dE_{\mathrm{e.m.}}}{dt} = \alpha \frac{2\pi\omega \left(\delta^{ij} - \hat{k}^i \hat{k}^j\right) \rho^{ij}(\omega, \boldsymbol{k})}{\omega^2 + k^2}, \\ \boldsymbol{A_k} \parallel \boldsymbol{k} \ : & \frac{-1}{E_{\mathrm{e.m.}}} \frac{dE_{\mathrm{e.m.}}}{dt} = \alpha \frac{4\pi \hat{k}^i \hat{k}^j \rho^{ij}(\omega, \boldsymbol{k})}{\omega} \end{split}$$

Dispersion relation for a Euclidean correlator at zero virtuality

- Let $\sigma(\omega) \equiv \rho_T(\omega, |{m k}| = \omega)$ be the relevant spectral function proportional to the photon emission rate:
- ▶ let $H_E(\omega_n) \equiv G_E(\omega_n, k = i\omega_n)$ the momentum-space Euclidean correlator with Matsubara frequency ω_n and imaginary spatial momentum $k=i\omega_n$;
- lacktriangle once-subtracted dispersion relation: ($\sigma(\omega)\sim\omega^{1/2}$ at weak coupling)

$$H_E(\omega_n) - H_E(\omega_r) = \int_0^\infty \frac{d\omega}{\pi} \, \omega \, \sigma(\omega) \left[\frac{1}{\omega^2 + \omega_n^2} - \frac{1}{\omega^2 + \omega_r^2} \right], \quad n, r \neq 0.$$

Recall photon rate:

$$\frac{d\Gamma_{\gamma}}{d\omega} = \frac{\alpha}{\pi} \, \frac{1}{e^{\beta\omega} - 1} \cdot (\omega \, \sigma(\omega)).$$

[HM, 1807.00781.]

Conclusion

- Photon rate: first lattice calculation in dynamical QCD with continuum limit.
- The transverse-minus-longitudinal combination cancels a large ultraviolet and admits a super-convergent sum rule.
- Euclidean correlators show only small differences with weak-coupling prediction; results for $d\Gamma_{\gamma}(k\geq \pi T)$ compatible with weak-coupling prediction.
- ▶ Dispersion relation at fixed photon virtuality $q^2=0$ can be used to probe exclusively the photon rate (rather than the full (ω,k) dependence).

List of references

Lattice papers on the photon rate:

- \blacktriangleright Karsch, Laermann, Petreczky, Stickan, Wetzorke 2002; S. Gupta 2004; Aarts, Allton, Foley, Hands, Kim 2007: quenched calculations, k=0.
- ▶ hep-lat/0610061 (LAT06): Aarts, Allton, Foley, Hands: quenched, $k \neq 0$
- ightharpoonup 1012.4963 (PRD): Ding, Francis, Kaczmarek, Karsch, Laermann, Soeldner, quenched calculation with continuum limit, k=0.
- ▶ 1212.4200 (JHEP): Brandt, Francis, HM, Wittig: $N_f=2$, $N_t=16$, k=0, $m_\pi=270$, $T=250 {\rm MeV}.$
- ▶ 1307.6763 (PRL), 1412.6411 (JHEP): Aarts, Allton, Amato, Giudice, Hands, Skullerud: $N_f=2+1,\ k=0$, anisotropic, fixed-scale temperature scan, $m_\pi=384\,\mathrm{MeV}$
- ▶ 1512.07249 (PRD): Brandt, Francis, Jäger, HM, $N_f=2, k=0$, $N_t=12 \rightarrow 24, m_\pi=270$, fixed-scale scan across the phase transition.
- ▶ 1604.07544 (PRD): Ghiglieri, Kaczmarek, Laine, F. Meyer: quenched calculation with continuum limit, $k \neq 0$.
- ▶ 1310.0164, Laine; 1910.09567, Jackson, Laine: spectral functions at NLO.
- ▶ here: $N_f = 2$ calculation with continuum limit at T = 250 MeV, $k \neq 0$.

What the dispersive integrand might look like for $T=250\,\mathrm{MeV}$

▶ the lattice observable $[H_E(2\pi T) - H_E(4\pi T)]$ is mostly sensitive to the rate of emission of multi-GeV photons.

A sum rule for $\rho \equiv \rho_{\lambda=-2}$

- i. Lorentz invariance and transversity $\Rightarrow \tilde{G}_{\rm E}(\omega_n,k)=0$ in vacuum and UV finite at T>0
- ii. OPE: from power-counting one expects $\tilde{G}_{\rm E}(\omega_n,k)\sim \frac{\langle \mathcal{O}_4\rangle}{\omega_n^2}$ Furthermore, charge conservation demands $\tilde{G}_{\rm E}(\omega_n,k)\to 0$ as $k\to 0$ and $\omega_n\neq 0$, so actually

$$\tilde{G}_{\rm E}(\omega_n,k) \sim \frac{k^2 \langle \mathcal{O}_4 \rangle}{\omega_n^4}$$

iii. From the dispersive representation:

$$\tilde{G}_{\rm E}(\omega_n,k) = \int_0^\infty \frac{\mathrm{d}\omega}{\pi} \omega \frac{\rho(\omega,k)}{\omega^2 + \omega_n^2} \xrightarrow{\omega_n \to \infty} \frac{1}{\pi \omega_n^2} \int_0^\infty \mathrm{d}\omega \,\omega \,\rho(\omega,k)$$

The two expressions are only compatible if the super-convergent sum rule

$$\int_0^\infty d\omega \,\omega \rho(\omega, \mathbf{k}) = 0$$

holds.

Choosing a favourable λ : non-interacting fermions

Spectral function

Euclidean correlator with $\lambda = -2$

- ▶ We choose $\lambda = -2$ from now on: UV-finite correlator even at $x_0 = 0$.
- for $k = O(\pi T)$, $\rho(k, k, \lambda) = O(\alpha_s \log \alpha_s)$ in perturbation theory.

Sketch of the (standard) derivation of the dispersion relation

$$G_R(\omega,k)=i(\delta_{il}-rac{k_ik_l}{k^2})\int d^4x\;e^{i\mathcal{K}\cdot x}\theta(x^0)\left\langle [\mathbf{j}^i(x),\,\mathbf{j}^l(0)]
ight
angle.$$
 But
$$[j^\mu(x),j^\nu(0)]=0\quad {
m for}\quad x^2<0,$$

 \Rightarrow the retarded correlator $H_R(\omega) \equiv G_R(\omega, k = \omega)$ at lightlike momentum is analytic for $\operatorname{Im}(\omega) > 0$. Similarly, the advanced correlator $H_A(\omega)$ is analytic for $\operatorname{Im}(\omega) < 0$.

Define the function
$$H(\omega) = \left\{ \begin{array}{ll} H_R(\omega) & \mathrm{Im}\,(\omega) > 0 \\ H_A(\omega) & \mathrm{Im}\,(\omega) < 0 \end{array} \right.$$

It is analytic everywhere, except for a discontinuity on the real axis:

$$H(\omega + i\epsilon) - H(\omega - i\epsilon) = H_R(\omega) - H_A(\omega) = i\sigma(\omega),$$

Write a Cauchy contour-integral representation (using two half-circles) of $H(\omega)$ just above the real axis, where it coincides with $H_R(\omega)$:

$$H_R(\omega) = H_R(\omega_r) + \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \, \sigma(\omega') \left[\frac{1}{\omega' - \omega - i\epsilon} - \frac{1}{\omega' - \omega_r - i\epsilon} \right].$$

The dispersion relation for the Euclidean correlator follows from the observation $G_E(\omega_n, k^2) = G_R(i\omega_n, k^2)$.

Representation through non-static screening masses

$$\tilde{G}_{E}(\omega_{r}, x_{3}) = -2 \int_{0}^{\beta} dx_{0} e^{i\omega_{r}x_{0}} \int dx_{1} dx_{2} \langle J_{1}(x)J_{1}(0) \rangle = \sum_{n} |A_{n}^{(r)}|^{2} e^{-E_{n}^{(r)}|x_{3}|}$$

$$\Rightarrow \underbrace{H_E(\omega_r)}_{={\rm O}(g^2)} \equiv \int_{-\infty}^{\infty} dx_3 \; \tilde{G}_E(\omega_r, x_3) \; e^{\omega_r x_3} = 2\omega_r^2 \sum_{n=0}^{\infty} \underbrace{|A_n|^2}_{={\rm O}(g^4)} \underbrace{\frac{1}{E_n^{(r)} \left(E_n^{(r)}{}^2 - \omega_r^2\right)}}_{={\rm O}(g^{-2})}.$$

This helps explain the connection observed in [Brandt et al, 1404.2404] between non-static screening masses and the LPM-resummation contributions to the photon emission rate [Aurenche et al, hep-ph/0211036].

In lattice regularization, Lorentz symmetry is absent $\Rightarrow H_E(\omega_r)$ does not vanish in vacuum as it does in the continuum. Explicit subtraction of the *in vacuo* $H_E(\omega_r)$ from the thermal $H_E(\omega_r)$ is necessary.