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➢Dynamical ejection:

❖ Tidal deformation: equatorial plane

❖ Shock at NSs interface and radial oscillations

➢Disk:  10−3 𝑀⨀ < 𝑀𝑑𝑖𝑠𝑘 < 0.03𝑀⨀

❖ Viscous or neutrino heating

Ejection mechanisms
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kilonova signal

𝐿𝑝𝑒𝑎𝑘 ∝
𝑣𝑀𝑒𝑗

𝑘

ൗ1 2

𝑡𝑝𝑒𝑎𝑘 ∝
𝑘𝑀𝑒𝑗

𝑣

ൗ1 2

𝑇𝑝𝑒𝑎𝑘 ∝ 𝑣𝑀𝑒𝑗
− ൗ1 8𝑘− ൗ3 8

Nicholl et al. [arXiv:astro-ph.HE/1710.05456]
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Limit on ejecta from the Kilonova signal𝟐 < 𝑴𝒎𝒂𝒙 < 𝟐. 𝟐𝑴⊙ , 𝑹𝟏.𝟓 < 𝟏𝟑. 𝟓 𝒌𝒎

What are we left with?

• 11.5 < 𝑅1.5 < 13 𝑘𝑚 : hyperons and delta from 1.5𝑀⊙ , hybrid stars

• 𝑹𝟏.𝟓 < 𝟏𝟏. 𝟓 𝒌𝒎 : only disconnected solutions of the TOV Two different configurations

1. Hadronic Matter

2. Partially or totally deconfined quark matter

Radii measurements from x-ray binaries ≈ 11 km

Why quark matter?
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Twin-stars Two-families scenario

• 1 order phase transition
• The quark stars have the smallest radii

• Witten hyphotesis
• The quark stars have the largest radii

Strange quark matter
➢ u, d, s quarks, gluons and electrons
➢ Witten: absolutely stable energy per baryon < 930 MeV
➢ it can exist in lumps from few fm to 10 km (quark star)

A. Drago, A. Lavagno, and G. Pagliara, Phys. Rev.

D89,043014 (2014), 1309.7263
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Two-families scenario…
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Strangeness
fraction

𝒀𝒔 ≈ 𝟎.𝟐 − 𝟎. 𝟑

𝑑𝑠 ≤ 𝑛0
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Classification of the mergers

1. Hadronic-Hadronic (HS-HS)
2. Hadronic-Quark (HS-QS)
3. Quark-Quark (QS-QS)

HS-QS compatible with 

the limits on ෙΛ

GW170817



Kilonova?

❖the radii of the two compact 
objects are both rather small, the 
system is asymmetric and the 
threshold mass is large

❖Issue: fate of quark matter
Strangelets evaporation?

Astrophys. J. 881, 122 (2019)
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Previous studies:  strangelets evaporation in cosmological context
C. Alcock and E. Farhi, Phys. Rev.D32, 1273 (1985)
J. Madsen, H. Heiselberg, and K. Riisager, Phys. Rev.D34, 2947 (1986) …

Production of strangelets at a critical temperature of ≈ 100 MeV

Lumps of strange matter with baryon number A:
• 3A quarks in quark-matter phase

• radius ≈ 𝐴 Τ1 3

• mass = eA where e ≈ 860 – 880 MeV ionization energy ≈ 50 – 70 MeV

The universe cools down from 100 to 1 MeV in 1s: is that time enough to evaporate the lumps?
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where 𝜇 is the shear viscosity and 𝜖 is the energy dissipation rate

Weber number 𝑾𝒆 𝒅 =
𝜌

𝜎
𝑣 𝑑 2𝑑

where 𝜎 is the surface tension and 𝑣 𝑑 is the turbolent velocity

condition:  𝑊𝑒 𝑙𝑘 ≥ 1 , 𝑑 > 𝑙𝑘 A ~ 1037 −1038

2. re-scattering:  Ohnesorge number 𝑶𝒉 =
𝜇

𝜌𝜎𝑑 ൗ1 2

condition:  𝑂ℎ ≤ 0.1 A~ 𝟏𝟎𝟐𝟗

❖ Shock waves larger energies and smaller length scales
small strangelets

Fragmentation
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4𝜋𝑟𝑠
2
7𝜋2

160
𝑇𝑢
4𝑝 𝑟𝑠, 𝑇𝑢 − 𝑇𝑠

4𝑝 𝑟𝑠, 𝑇𝑠 =
𝑑𝐴

𝑑𝑡
𝐼 + 2𝑇𝑠

evaporation𝜈 emission𝜈 absorption

Energy lossEnergy gained
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5 sin 𝜃𝑐

2 𝐴 Negligible lower limit on the timescale
𝝉 > 𝟏𝟎−𝟔 − 𝟏𝟎−𝟓 𝒔
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➢ For 𝑇𝑢 < 5.6 𝑀𝑒𝑉 re-absorption rate overcome
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➢ To evaporate 𝐴~1030 in few 10−3𝑠 we need
𝑻~𝟏𝟑𝑴𝒆𝑽
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Evaporation: non-shocked strangelets

The density is dominated by evaporated
neutrons

𝑁𝑛 𝑇𝑠 =
11𝜋2 𝑇𝑢

4−𝑇𝑠
4

360𝑇𝑠

➢ For 𝑇𝑢 < 5.6 𝑀𝑒𝑉 re-absorption rate overcome
evaporation rate

➢ To evaporate 𝐴~1030 in few 10−3𝑠 we need
𝑻~𝟏𝟑𝑴𝒆𝑽

Some fragments with 𝑨~𝟏𝟎𝟑𝟎 could survive
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𝜈-heating: ≈70% evaporate
𝑇𝑢 = 𝑇𝑠: 94% evaporate

(total ejecta = 6.6 ∙ 10−3𝑀⊙)

How many strangelets … ?

➢ keep 𝑇 > 13 𝑀𝑒𝑉 for 𝑡 > 8𝑚𝑠 or
𝑇 > 16 𝑀𝑒𝑉 for 𝑡 > 1 𝑚𝑠
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remain

➢ have a temperature that is still increasing at
end of the simulation

increasing

Some strangelets evaporate partially:  ≈90% of the mass evaporates



Conclusions
❖ Most of the strangelets ejected during 

the merger evaporate
❖ non-evaporating strangelets are massive 

𝐴~1030 and their number is small and 
so they are very unlikely to be detected 
in experiments

❖ evaporation is dominated by neutrons 
and therefore the initial electron 
fraction of the material is really low: 
same KN as NS-NS
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in experiments
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