Today's wrap-up: an exotic landscape of QCD

S. Piano

INFN - Trieste

Are there compact Multiquark states?

- Short distance force $< 0.5 \text{ fm} \Rightarrow \text{quark dynamics (Oka, Yazaki)}$
- N- quarks in a compact configurations quark model
 - Color-Color interaction is no important for short range N-N interaction
 - Color-spin interaction for 2 body
 - Comparison with lattice (HAL QCD) NN interaction
 - Possible compact Flavor exotics:

```
Pentaquark Pscc (udscc) I=0,~S=1/2 \Lambda+J/\psi \Delta E_{CS}\left(m_{ud},m_s,m_c\right)=-124~{\rm MeV} Pentaquark Pccs (udccs) I=0,~S=1/2 \Xi_{cc}^++K^+ \Delta E_{CS}\left(m_{ud},m_s,m_c\right)=-135~{\rm MeV} Tetraquark T(udcc) I=0,~S=1 D^0+D^{*+} or \bar{D}^0+\bar{D}^{*-} \Delta E_{CS}\left(m_{ud},m_s,m_c\right)=-150~{\rm MeV}
```

Probably molecular configurations:

```
Tetraquark X(qq̄cc̄) \Delta E_{CS}\left(m_{ud},m_{s},m_{c}\right) = -40~\mathrm{MeV} \qquad \Rightarrow \text{probably molecular type} Pentaquark Pc (uudcc̄) (LHCb) \Delta E_{CS}\left(m_{ud},m_{s},m_{c}\right) = -34~\mathrm{MeV} \qquad \Rightarrow \text{Can not be a compact state (Park,Park,Cho, Lee PRD95(17))} \\ \Rightarrow \text{probably molecular type} Dibaryon d*(2380) (uuuuuu) (WASA at COSY) \Delta E_{CS}\left(m_{ud},m_{s},m_{c}\right) = 0~\mathrm{MeV} \qquad \Rightarrow \text{Can not be a compact state (Park,Park,Lee PRD92(15))} \\ \Rightarrow \text{probably molecular type}
```

Exotica production in HI collisions (ExHIC)

 Molecular vs Compact multi quark states production

 X(3872) 2 quark vs compact 4 quark

 Production yield and p_T dependence can discriminate structures!

But why no H dibaryon?

Many negative searches

 H dibaryon channel: Flavor breaking effect weakens attraction

Nagara event: _{^^}6He

- $B_{\Lambda\Lambda}(_{\Lambda\Lambda}^{6}He) = 6.91\pm0.16 \text{ MeV}$
- A: Ξ^- capture $\Xi^- + {}^{12}\mathrm{C} \to {}^{6}_{\Lambda\Lambda}\mathrm{He} + t + \alpha$
- B: weak decay $_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}^{5}_{\Lambda}\text{He} + p + \pi^{-}$ (no $_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}^{4}\text{He} + H$)
- To forbid ${}^{6}_{\Lambda\Lambda}\mathrm{He}{\to}\mathrm{H}{+}^{4}\mathrm{He}$, impose B(H) \leq 7 MeV. A bound H most likely overbinds ${}^{6}_{\Lambda\Lambda}\mathrm{He}$ [Gal, PRL 110 (2013) 179201].
- LQCD: a weakly bound H becomes unbound. $SU(3)_f$ breaking pushes it to $\approx N\Xi$ threshold, ≈ 26 MeV in $\Lambda\Lambda$ continuum [HALQCD, NPA 881 (2012) 28; Haidenbauer & Meißner, ibid. 44].
- Search for m(H) \leq 2.05 GeV by BaBar in $\Upsilon(2S,3S) \rightarrow H\bar{\Lambda}\bar{\Lambda}$ is negative [PRL 122 (2019) 072002].

But why no H dibaryon?

Many negative searches

 H dibaryon channel: Flavor Breaking effect weakens attraction in Flavor 1

Sexaquark

- How could we have missed a stable particle made of quarks?
- S Same quark content as H-dibaryon, but different physics: not a loosely bound di-Λ
- looked for H-dibaryon through decays (but S is stable)
- mainly restricted to mass > 2 GeV (but m_s < 2 GeV)
- Wave function overlap with baryons is very small

But why no H dibaryon?

Many negative searches

 H dibaryon channel: Flavor Breaking effect weakens attraction in Flavor 1

Sexaquark

 How could we have missed a stable particle made of quarks?

Light ΛΛ hypernuclei predictions

Recent #EFT AA calculations

 B_{Λ} vs. #EFT cutoff λ ${}_{\Lambda\Lambda}^{5}H$ bound, ${}_{\Lambda\Lambda}^{4}H$ unlikely

minimum $|a_{\Lambda\Lambda}|$ to bind ${}_{\Lambda\Lambda}^{4}{\rm H}$ is over 1.5 fm, too large!

- Contessi-Schafer-Barnea-Gal-Mareš, PLB 797 (2019) 134893.
- Neutral systems $\Lambda\Lambda n$ & $\Lambda\Lambda n$ safely unbound.
- Argue that $\Lambda\Lambda \Xi N$ coupling effect is minor.

- ⁵/₁He overbinding problem resolved.
- Role of ΛNN forces in ΛZ & neutron stars?
- ${}_{\Lambda}^{3}$ n (Λ nn) is unbound.
- Onset of $\Lambda\Lambda$ binding: ${}_{\Lambda\Lambda}{}^{4}\mathbf{H}$ or ${}_{\Lambda\Lambda}{}^{5}\mathbf{Z}$? (E07, P75).
- ${}_{\Lambda\Lambda}^{3}$ **n** ($\Lambda\Lambda$ **n**) and ${}_{\Lambda\Lambda}^{4}$ **n** ($\Lambda\Lambda$ **nn**) are unbound.
- Shell model works well for g.s. beyond $_{\Lambda\Lambda}{}^{6}{\rm He}.$
- Study excited states by slowing down Ξ^- from $\bar{p}p \to \Xi^-\bar{\Xi}^+$ in FAIR (PANDA).

The puzzle of XYZ states

- Below open charm threshold:
 - Good agreement theory vs. experiment
- Above open charm threshold:
 - Many predicted states not discovered
 - Many unexpected states observed

BESIII: Study conventional as well as charmonium-like (exotic) XYZ states

- Direct access to Y states (1-) in direct formation (e⁺e⁻ annihilation)
- Study (charged & neutral) Z states
- Study X states in radiative decays

- Discovery of $Z_c(3900)^{\pm} \rightarrow J/\psi \pi^{\pm}$
 - > e⁺e⁻ → J/ψπ⁺π⁻
 - \rightarrow at $\sqrt{s} = 4.26 \text{ GeV} (525 \text{ pb}^{-1}, >8\sigma)$
- Mass close to DD* threshold

•
$$m = (3899.0 \pm 3.6 \pm 4.9) \text{ MeV}/c^2$$

 $\Gamma = (46 \pm 10 \pm 20) \text{ MeV}$

- Manifestly exotic:
 - \triangleright decays to J/ψ => contains $c\overline{c}$
 - electrical charged => contains ud
 - => First 4-quark state observation (?!)
- Confirmed by Belle and CLEO-c

BESIII: two Z_c triplets established

- Observation of Z_c(3900)⁰ → J/ψπ⁰
 in e⁺e⁻ → J/ψπ⁰π⁰ GeV (2.8 fb⁻¹, 10.4σ)
 confirms earlier evidence in CLEO-c data
- Parameters consistent with those of Z_c(3900)[±]
- $m = 3894.8 \pm 2.3 \pm 2.7 \,\text{MeV}/c^2$ $\Gamma = 29.6 \pm 8.2 \pm 8.2 \,\text{MeV}$
 - => Establishes an isospin triplet Z_c(3900)
- Confirmed by Belle and consistent with CLEO-c data

- Discovery of $Z_c(3900)^{\pm} \rightarrow J/\psi \pi^{\pm}$
 - $ightharpoonup e^+e^-
 ightharpoonup J/\psi \pi^+\pi^-$
 - \rightarrow at $\sqrt{s} = 4.26 \text{ GeV} (525 \text{ pb}^{-1}, >8\sigma)$
- Mass close to DD* threshold
- $m = (3899.0 \pm 3.6 \pm 4.9) \text{ MeV}/c^2$ $\Gamma = (46 \pm 10 \pm 20) \text{ MeV}$
- Manifestly exotic:
 - ightharpoonup decays to J/ψ => contains $c\overline{c}$
 - electrical charged => contains ud
 - => First 4-quark state observation (?!)

Confirmed by Belle and CLEO-c

BESIII: direct access to Y states

BESIII result, published

single peak for the Y(4260)!

 \triangleright two peaks favoured over one by >7 σ

• 3 coherent BW fit: Y(4220) and Y(4390)

Two structures consistently observed: Y(4220) & Y(4390)

=> Y(4260) → Y(4220) ?

BESIII: radiative transitions to X states

Experimental Review of the X(3872)

and the most intriguing one

The first unexpected states

- First observed by Belle in 2003
 - $ightharpoonup X(3872)
 ightharpoonup J/\psi \pi\pi$
 - very narrow state with JPC = 1⁺⁺
- Both, Belle & BaBar report signal in
 - $ightharpoonup X(3872)
 ightharpoonup D^{\overline{0}}D^{*0} \ (D^0D^0\pi^0 \ and \ D^0D^0\gamma)$

- Mass: $m(X) m(\bar{D}^{*0}) m(D^{0}) =$ = - 0.12 ± 0.19 MeV/c²
- Width: Upper limit by Belle
 - $ightharpoonup \Gamma_{X(3872)} < 1.2 \text{ MeV (90% c.l., 2011)}$

- $m = (4200.6^{+7.9}_{-13.3} \pm 3.0 \text{ MeV}/c^2$
- $\Gamma = (115^{+38}_{-26} \pm 12 \text{ MeV}/c^2)$

 Cross-section shape consistent with production via a Y state

[Phys. Rev. Lett., 122, 232002 (2019)]

For clarification: Precision measurement of $\Gamma_{X(3872)}$ in the sub-MeV range needed!

Coupled Channel Description of Charmed

Exotica

- The chiral unitary approach with coupled channels provides a simple and natural explanation of charmed exotica
- $X(3872) \Rightarrow D\bar{D}^*$; PDG: $X(3872) \Rightarrow \chi_{c1}(3872)!!!$
- $X(3940) \Rightarrow D^* \bar{D}^*$
- $X(4160) \Rightarrow D_s^* \bar{D}_s^*$
- $Y(4260) \Rightarrow \bar{D}(\rho D)_{D_1(2420)}$ PDG: $Y(4260) \Rightarrow \psi(4260)!!!$ The FCA to the Faddeev equations is an effective tool to deal with multi-hadron interaction
- $Z_c(3940) \Rightarrow \bar{D}D^* (I=1)$

<= due to the presence of a resonance below threshold that couples strongly

Constraints on Neutron Stars EOS

Neutron star mass measurements with binary radio pulsars

MSP with period P=3.15 ms

Pb = 8.68 d, e=0.00000130(4)

Inclination angle = 89.17(2) degrees!

Precise masses derived from Shapiro delay only:

 $M_p = 1.97(4) M_{\odot}$ $M_c = 0.500(6) M_{\odot}$

Update [Fonseca et al. (2016)]

 $M_p = 1.928(17) M_{\odot}$

Update [Arzoumanian et al. (2018)] Mp = 1.908(16) Mo

PSR J0740+6620 Cromartie et al., arXiv:1904.06759 (2019) PSR J1614-2230 Demorest et al., Nature (2010)

Precise mass derived from Shapiro delay only:

 $2.17^{+0.11}_{-0.10}\,\mathrm{M}_{\odot}$

Shapiro delay:

Constraints on Neutron Stars EOS

Discovery: neutron star merger!

*) B.P. Abbott et al. [LIGO/Virgo Collab.], PRL 119, 161101 (2017); ApJLett 848, L12 (2017)

	Low-spin priors $(\chi \le 0.05)$
Primary mass m ₁	1.36-1.60 M _☉
Secondary mass m_2	1.17–1.36 M _☉
Chirp mass M	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0
Total mass m_{tot}	$2.74^{+0.04}_{-0.01}M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm I}$	40^{+8}_{-14} Mpc

Constraints on NS mass and radii!

Constraint on maximum mass $2.01 < M_{TOV}/M_O < 2.16$ (Rezzolla et al., arxiv:1710.05938)

Constraint on minimal radius $R_{1.6} > 10.68 \text{ km}$ (Bauswein et al., arxiv:1710.06843) Constraint on maximal radius $R_{1.4} < 13.6 \text{ km}$

(Annala et al., arxiv:1711.02644)

Strange matter and exotica in NS

- Hyperon puzzle: an update due to 2 M_sun constraint
- Hyperon puzzle: deconfinement solution

- Sexaquarks in CS matter?
 - This induces a gravitational collapse!
 For hadronic EoS at M ~ 0.7 M_sun
 - Sexaquark dissociation

Formation and evaporation of strangelets during the merger of two compact stars

Why quark matter?

Merger of compact objects August 2017 Limit on $\check{\Lambda}$ from the inspiral phase $2 < M_{max} < 2.2 M_{\odot}$, $R_{1.5} < 13.5 \ km$ Limit on ejecta from the Kilonova signal What are we left with?

+ $11.5 < R_{1.5} < 13~km$: hyperons and delta from $1.5 M_{\odot}$, hybrid stars

Radii measurements from x-ray binaries ≈ 11 km

- $R_{1.5} < 11.5 \ km$: only disconnected solutions of the TOV \longrightarrow Two different configurations
 - 1. Hadronic Matter
 - 2. Partially or totally deconfined quark matter

Kilonova?

- the radii of the two compact objects are both rather small, the system is asymmetric and the threshold mass is large
- Issue: fate of quark matter Strangelets evaporation?

Production of strangelets at a critical temperature of ≈ 100 MeV

Lumps of strange matter with baryon number A:

- 3A quarks in quark-matter phase
- radius $\approx A^{1/3}$
- mass = eA where e ≈ 860 880 MeV ionization energy ≈ 50 70 MeV

Conclusions

- Most of the strangelets ejected during the merger evaporate
- \star non-evaporating strangelets are massive $A{\sim}10^{30}$ and their number is small and so they are very unlikely to be detected in experiments
- evaporation is dominated by neutrons and therefore the initial electron fraction of the material is really low:

same KN as NS-NS

Beyond Exotica: from a first order transition in QCD with up, down and strange quarks to a dark QCD matter scenario

✓ Chiral extrapolation of baryon octet and decuplet masses

- resummed χPT : use on-shell masses in the loops
 - solve system of coupled and non-linear equations
 - chiral expansion with up, down and strange quarks is well convergent
 - reproduce the QCD Lattice data set at $m_{\pi,K} < 600 \text{ MeV}$
 - predict a large number of low-energy constants for the chiral Lagrangian of QCD
- predict first order transition for the baryon masses
 - the nature of the baryonic ground state in QCD depends on the quark masses
 - the nature of the baryonic ground state depends on the choice of Higgs field

\checkmark A dark matter scenario with \land baryons in a Higgs bubble

- Generalize the Higgs potential to support two degenerate minima
 - large fraction of (dark) baryonic matter in Higgs bubbles (here $M_{\Lambda} < M_N$)
 - derive a maximum radius of such bubbles (< 800 km)
- future request: derive equation of state of Λ baryons in the Higgs bubble ...
- possibility of strange dark matter objects with masses larger than neutron stars

Baryon masses depend on the Higgs field

iark masses in QCD are proportional to $v \sim r$

Hagedorn States and (anti-)(hyper-)nuclei production in HIC

- Lattice QCD doesn't support point-like Hagedorn states. The situation can be different if eigenvolumes are considered.
- Work in progress...

Single Hagedorn decay chain

Thermal Hagedorn gas

HADES rapidity spectra

Multi-freeze-out scenario

- A multi-freeze-out scenario could improve the quality of the fit
- A multi-freeze-out scenario could provide a simple explanation of strangeness enhancement
- Also in small systems, 2FO scenario improves on 1FO
- Exotica preliminary predictions: yields of strange penta-quarks would go up

Upcoming PANDA exp at FAIR

- Complementary production mechanisms and measurements needed
- Precise knowledge of decay width and line shape essential
- Complete the exotic multiplets
- Advantages of Anti-Protons
 - Access to all fermion-antifermion quantum numbers (not in e+e-)
 - Access to states of high spin J
- High statistics
- Precision resonance scans

