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The ,holy grail‘ of heavy-ion physics:

The phase diagram of QCD

Temperature

Early Universe

The Phases of QCD
(@) ©)
LHC@CERN ® ¢ 0 @
® ‘

@ ® Quark-Gluon Plasma
® O ™)

(@] ] @®
NA61/SHINE@CERN

o®

()

FAIR@GSI

Color |

2, p;
Superconductor

900 Me
Baryon Chemical Potential

O Clusters are very
abundant at low energy
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Experimental observables:

= projectile/target spectators=» heavy cluster formation
= midrapidity=» light clusters

| Hyperons are created in participant zone
(Anti-) hypernuclei production:
- at mid-rapidity by A coalessance during expansion
- at projectile/target rapidity by rescattering/absorption

of A by spectators

High energy HIC:
,Jcein afire® puzzle:
how the weakly bound
objects can be formed
in a hot enviroment ?!
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Modeling of cluster and hypernuclei formation

Existing models for clusters formation: A. Andronic et al., PLB 697, 203 (2011)

O statistical model:
- assumption of thermal equilibrium
(difficult to justify at target and projectile rapidity)
- strong sensitivity of nuclei yields to choice of T,
- binding energies are small compared to T,

Vield (dN/dy) for 10° events

O coalescence model:
- determination of clusters at a given point in time by
coalescence radii in coordinate and momentum spaces

103‘
\/Sp (GEV)

= don‘t provide information on the dynamics of clusters formation

In order to understand the microscopic origin of clusters formation one needs:
- arealistic model for the dynamical time evolution of the HIC - transport models
- dynamical modeling of cluster formation based on interactions

 Cluster formation is sensitive to nucleon dynamics

=» One needs to keep the nucleon correlations (initial and final) by realistic
nucleon-nucleon interactions in transport models:

= QMD (quantum-molecular dynamics) — allows to keep correlations

= MF (mean-field based models) — correlations are smeared out



.

PHQMD

PHQMD: ,price to pay‘ for ,profits*

o

OMD dynamics for baryons (in PHOMD):

Equation-of-motions: based on quantum-
mechanical Hamiltonian formulation from
the Ritz variational principle

Propagate: Gaussian wave functions
(Ansatz) in 6+1 dimensions (r, p + time)

Consequences:

L Non-relativistic consideration

L Non-covariant formulation

=> Relativistic extension of QMD is lacking
for the assumptions (hopefully
acceptable for the goals here)

U N-body dynamics is realized by 2 body
forces between all baryons in the system
« = allows to keep correlations

BUU dynamics for baryons (cf. PHSD):

Equation-of-Motions: based on field
theoretical equations-of-motion -

BUU equation is the on-shell limit of the
Kadanoff-Baym many-body theory
Propagate: Green functions —in KB and
f(x,p) — single-particle distribution functions
in BUU; n=8 dimensions [(r,t) (E,p)]

Consequences:
] Relativistic consideration
J Covariant formulation

U N-body dynamics is reduced to mean-field
dynamics in the self generated mean-field
potential + off-shell interactions

= =% loosing higher order correlations
(not very relevant for the “bulk”
dynamics!)
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N-body correlations are important for cluster formation !
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et 8 PHQMD

The goal: to develop a unified n-body microscopic transport approach for the

description of heavy-ion dynamics and dynamical cluster formation from low to
ultra-relativistic energies

Realization: combined model PHQMD = (PHSD & QMD) & SACA

Parton-Hadron-Quantum-Molecular Dynamics

4 =

Initialization = propagation of baryons:
QMD (Quantum-Molecular Dynamics)

—

Propagation of partons (quarks, gluons) and mesons
+ collision integral = interactions of hadrons and partons (QGP)
from PHSD (Parton-Hadron-String Dynamics)

~ =

Clusters recognition:
SACA (Simulated Annealing Clusterization Algorithm)
vs. MST (Minimum Spanning Tree)

LR T &f

QMD&PHSD SACA tlme




Initial A+A
collision

|
@

Partonic phase

collision integral

Parton-Hadron-String-Dynamics (PHSD) 2 PHOMD

PHSD is a non-equilibrium microscopic transport approach for the description of
strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Dynamics: based on the solution of generalized off-shell transport equations derived
from Kadanoff-Baym many-body theory

LUND string model

Q Initial A+A collisions :
N+N - string formation = decay to pre-hadrons + leading hadrons

L Formation of QGP stage if local & > eqitical
dissolution of pre-hadrons - partons

pGeV]

Q Partonic phase - QGP: / :
QGP is described by the Dynamical QuasiParticle Model (DQPM) ‘ ;
matched to reproduce lattice QCD EoS for finite T and pg (crossover)
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- Degrees-of-freedom: strongly interacting quasiparticles: ner— —
massive quarks and gluons (g,9,q,,,) With sizeable collisional jjg\ -]
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- Interactions: (quasi-)elastic and inelastic collisions of partons :5 N oc— ]
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[ Hadronization to colorless off-shell mesons and baryons:
Strict 4-momentum and quantum number conservation

 Hadronic phase: hadron-hadron interactions — off-shell HSD

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3 6



Initial conditions of PHQMD

Cluster formation is sensitive to the initial correlations of nucleons =

Initialization of a nucleus:
the initial distributions of nucleons in projectile and target has to be carefully modelled:

- Right density distribution
- Right binding energy to guarantee the stability of nuclei

O Initialization in coordinate space: Wood-Saxon distribution:
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4 Initialization in momentum space: Thomas-Fermi distribution p<pg with the
additional requirement that nucleons are bound:

0< Vm?+pi?(t=0)—m < — < V(rio) >



QMD propagation

to

O Generalized Ritz variational principle: é/ dt < -e;ia(t)|-aiﬁ — Hl|y(t) >=0.
4 t

N
Assume that y =11 f(r,p,ry, Pig,t) for N particles (neglecting antisymmetrization !)
i=

single-particle Wigner density of the nucleon “i”

U

Trial wave function for one particle ”: Gaussian with width L centered at [y, P;o

L=4.33 fm?2
1

2
o= 3 (ri—ri0(1))? ,— 55 (Pi—Pio (1))
353

f(ri.‘pi! I'j(],pi(],t) —

O Equations-of-motion (EoM) for Gaussian centers in coordinate and
momentum space:

O(H) : O(H)
o= i
10 (")pm pio (L)""ilD
Hamiltonian: H =Y H,=> (Li+Vi)=) (Ti+ )Y Vij)
i i i i

Vij = V(ri,rj.rio, o, t) = Vskyrme + Voul



QMD interaction potential and EoS

The expectation value of the Hamiltonian:
(H) = (I)+ (V) = Z(a,,’p?o +m? —m) + Z(ngyrme(rio, t))
i i

O Skyrme potential - scalar (‘static’) *:

(pia t a1\ a (MeV) g (MeV)  ~
(Vskyrme(Tio. 1)) = « (M) +3 (M) S -390 320 1.14
0 Po H -130 59 2.09

O modifed interaction density (with relativistic extension):

Y 4 1370 _ 44T )T (1)2
pint(Tio, 1) — C E () em 2ot o EoS for infinite matter at rest
100 - -
42 L L ) — hard EoS
e~ B (ri (D=r(0))” 80 | == soft EoS

-

>
<+ HIC €-> EoS for infinite matter at rest §
o compression modulus K of nuclear <
matter: =
dP P (E/A
K= P g 2O E/AW)

AV T (8p)2 ’P:PO'

0.0 0.5 1.0 1.5 2.0 2.5 3.0

. . . . P/ Po
Work in progress: implementation of momentum dependent potentials /



First PHQMD results on ,bulk®
observables
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PHQMD: ,bulk‘ dynamics at AGS/FAIR/NICA energies

The rapidity and m distributions for protons from 5% central Au+Au collisions at 4, 6, 8, 10.7 A GeV
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the influence of EoS is slightly visible in rapidity spectra of protons
m; spectra of protons from PHQMD with a ‘hard’ EoS are harder then with ‘soft’ EoS
PHQMD results for the m; spectra with ‘soft’ EoS are in a good agreement with the PHSD

spectra (using ‘soft’ EoS in default PHSD4.0 version)
= QMD and MF dynamics gives similar results with similar EoS
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PHQMD: ,bulk‘ dynamics at AGS/FAIR/NICA energies

The rapidity and m+ distributions for =%, K*, K=, A+Z° from 5% central Au+Au collisions
at 4, 6, 8,10.7 A GeV
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U theinfluence of EoS is slightly visible in rapidity and m; spectra of newly produced hadrons



PHQMD: ,bulk‘ dynamics at RHIC BES
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PHQMD: good agreement with RHIC BES exp. data



PHQMD: ,bulk‘ dynamics at SPS

The rapidity and m+ distributions for protons from 7% central Pb+Pb collisions at 20, 40, 80, 158 A GeV
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PHQMD: ,bulk‘ dynamics at SPS

The rapidity and m+ distributions for n—, K*, K-, A+Z° from 7% central Pb+Pb collisions
at 20, 40, 80, 158 A GeV
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PHQMD: good agreement with exp. data - similar to PHSD - since at high energies
the dynamics is dominated by collisions rather than potential interactions!



PHQMD: ,bulk‘ dynamics at RHIC

The rapidity and p; distributions for p, anti-p, n-, K*, K-, A+Z9, anti(A+Z°) from 5% central Au+Au
collisions at s12 = 200 GeV
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PHQMD: results are similar to PHSD - since at RHIC energies the dynamics is

dominated by collisions of partons/hadrons rather than nuclear potential interactions!



Clusters in PHQMD:
MST & SACA

arXiv:1907.03860

.

@
PHQMD



Cluster recognition: Minimum Spanning Tree (MST)

The Minimum Spanning Tree (MST) is a cluster recognition method applicable for the
(asymptotic) final states where coordinate space correlations may only survive for
bound states.

The MST algorithm searches for accumulations of particles in coordinate space:

1. Two particles are ‘bound’ if their distance in coordinate space fulfills

‘ﬁ—Fj‘£2.5ﬁn o o S °
. | & ‘é\' & g

2. Particleis bound to a cluster if
it bounds with at least one particle

of the cluster.
©
* Remark: °
inclusion of an additional momentum cuts
(coalescence) lead to a small changes:
particles with large relative momentum

are mostly not at the same position

R. K. Puri, J. Aichelin, J.Comp. Phys. 162 (2000) 245-266
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Simulated Annealing Clusterization Algorithm (SACA)

. .- . Based on idea by Dorso and Randrup
Basic ideas of clusters recognition by SACA: (Phys.Lett, B301 (1993) 328)

» Take the positions and momenta of all nucleons at time t

» Combine them in all possible ways into all kinds of clusters or leave them
as single nucleons

» Neglect the interaction among clusters

» Choose that configuration which has the highest binding energy:

Take randomly 1 nucleon Add it randomly to another cluster
out of a cluster ® ° °
OOQQ. OOO” OOQ”
) .030 ) o so ) < L
°%S T °%S
@ .0 @ .0 @ .0
@ @ @

E=Elyi, +E2 +VI+V2 E'=El};, +E2|in+VI+V2

If E’ < E take a new configuration
If E’ > E take the old configuration with a probability depending on E’-E
Repeat this procedure many times

- Leads automatically to finding of the most bound configurations

R. K. Puri, J. Aichelin, PLB301 (1993) 328, J.Comput.Phys. 162 (2000) 245-266;
P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390



Cluster recognition by SACA

d SACA searches for the most bound configurations = clusters
Clusters are bound by potential interactions between nucleons V,

V, — Skyrme potential (as in PHQMD!)

O Binding energy (SACA) vs. Weizsaecker formula

There are two kinds of clusters:

) Heavy clusters formed from spectator
matter close to beam and target rapidity:
= initial-final state correlations

= HIC makes spectator matter unstable

II) Light clusters formed from participant
matter created during the expansion of the
fireball =

“ice” (Eping =8 MeV/N) in “fire”(T2 100 MeV)
= originis not well understood

= seen from SIS to RHIC

= quantum effects may be important

Binding energy/N [GeV]

Binding energy per nucleon

0.0
i — PHQMD hard EOS
i -—- Weizsaecker formula
-0.002 IE
Au+Au, 600 AGeV
-0.004
-0.006 + 1y
-0.008
-0.01 ' ' ‘ ' '
0 10 20 30 40 50 60

cluster charge

=>» average binding energy of the
clusters identified by SACA at late
times (>100 fm/c) is in agreement
with Weizsaecker formula
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.. Time evolution: Au+Au, b=2 fm, 600 AGeV

PHQMD

By M. Winn



PHQMD: light clusters and ,bulk‘ dynamics at SIS

dN_I;"’dy(]

Scaled rapidity distribution y, =yly,, in central Au+Au reactions at 1.5 AGeV

Au+ Au, 1.5AGeV, central

Aut+Au, 1.5 A GeV,b <2.25f
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30% of protons are bound in clusters at 1.5 A GeV
Presently MST is better identifying light clusters than SACA
= To improve in SACA: more realistic potentials for small clusters, quantum effects

Pion spectra are sensitive to EoS: better reproduced by PHQMD with a ‘hard’ EoS
PHQMD with soft EoS is consistent with PHSD (default — soft EoS)

* To improve in PHQMD: momentum dependent potentials
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PHQMD: light clusters at AGS energies

The invariant multiplicities for p, d, t, *He, *He at p; <0.1 GeV versus rapidity

Au+Au, 11 AGeV, minimal bias
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PHQMD: clusters recognition by MST provides a reasonable description of exp.
data on light clusters at AGS energies
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PHQMD: heavy clusters

Heavy clusters (spectator fragments): experim. measured
up to E, .., =1 AGeV (ALADIN Collab.) Au+Au, 600AMeV, min bias, SACA

o | PHQMD
hard EOS

@ 75 fm/c

60 | M 125 fm/c

PHOMD with SACA shows an agreement o |

with ALADIN data for very complex cluster 240 |
observables as S|
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PHQMD: hypernuclei

PHQMD results (with a hard EoS and MST algorithm) for the rapidity distributions of all charges,
Z =1 particles, Z=2, Z>2, as well as A’s, hypernuclei A<4 and A>4 for Au+Au at 4 and 10AGeV

dN/dy

| Au+Au, minimum bias, 4 A GeV, MST
T T

3 T
10 - e— AllZ
o= = 7=1

_A
=i Hypernuclei A<4
==p== Hypernuclei A >4

The multiplicity of light hypercluster vs.

impact parameter b for Au+Au, 4 AGeV

Au+Au, 4AGeV, min bias, SACA

PHQMD:
hard EOS

H
9
L

multiplicity (hyper-fragments)

[ AutAu, minimum bias, 10 A GeV, MST |
3 T T ! 1 ! 1 ! 1 ! 1 ! 1 ! T
- =1 === Hypernuclei A<4

= 222 ==t Hypernuclei A>4
—- = F )

dN/dy
;=

-
-
s

¥ A .
2|4 YN -t
10 H M.‘\‘P“’-'\ !"'“/ W
= L] ] (L
oy
e
]_0'3 r . 1 . 1 . 1 . 1 - 1 !. f 1 . 1 .
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

y

O Central collisions = light hypernuclei
O Peripheral collisions = heavy hypernuclei

Penetration of A’s, produced at midrapidity,
to target/projectile region

due to rescattering

=» Possibility to study AN interaction
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PHQMD: collectivity of clusters

0.8

Au+Au, 600 AMeV, 4 <b <6 fm, SACA
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PHQMD with hard EoS, with SACA:
v, of light clusters (A=1,2,3,4) vs rapidity
for mid-central Au+Au at 600 AMeV, 4AGeV

4 v, : quite different for nucleons and
clusters (as seen in experiments)

J Nucleons come from participant
regions (= small density gradient)
while clusters from interface
spectator-participant (strong density
gradient)

4 v, increases with E,,,
O - larger density gradient
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|
.@; Summary

PHQMD

The PHQMD is a microscopic n-body transport approach for the description of
heavy-ion dynamics and cluster formation

combined model PHQMD = (PHSD & QMD) & SACA

PHQMD

- provides the good description of hadronic ‘bulk’ observables
from SIS to RHIC energies

- shows sensitivity to EoS: m; spectra of baryons

- predicts the dynamical formation of clusters from low to ultra-relativistic energies

- allows to understand the proton spectra and the properties of clusters
(dn/dp+dy, v,,v,, fluctuations)

- allows to understand clusters formation in the participant and spectator region
(consistent with available cluster data by ALADIN collaboration)

- allows to understand the formation of hypernuclei
» ‘:g
*%* PHQMD :

. . under development
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Thank you for your attention !

Thanks to the Organizers !
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