

Clusters and hypernuclei production within the PHQMD

Elena Bratkovskaya

(GSI, Darmstadt & Uni. Frankfurt)

Jörg Aichelin, Arnaud Le Fèvre, Yvonne Leifels, Viktar Kireyeu, Vadim Kolesnikov, Vadim Voronyuk, Gabriele Coci, Michael Winn, Susanne Glaessel, Christoph Blume (SUBATECH, Nantes & GSI, Darmstadt & JINR, Dubna & Uni. Frankfurt)

arXiv:1907.03860

3rd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC 2-6 December 2019, University of Wroclaw, Poland

The ,holy grail' of heavy-ion physics:

The phase diagram of QCD

Experimental observables:

- projectile/target spectators → heavy cluster formation
 - midrapidity → light clusters

! Hyperons are created in participant zone

(Anti-) hypernuclei production:

- at mid-rapidity by Λ coalessance during expansion
- at projectile/target rapidity by rescattering/absorption

of Λ by spectators

High energy HIC:

Ice in a fire' puzzle: how the weakly bound objects can be formed in a hot enviroment ?!

Clusters are very abundant at low energy

Modeling of cluster and hypernuclei formation

Existing models for clusters formation:

□ statistical model:

- assumption of thermal equilibrium (difficult to justify at target and projectile rapidity)
- strong sensitivity of nuclei yields to choice of T_{ch}
- binding energies are small compared to T_{ch}

□ coalescence model:

- determination of clusters at a given point in time by coalescence radii in coordinate and momentum spaces

don't provide information on the dynamics of clusters formation

In order to understand the microscopic origin of clusters formation one needs:

- a realistic model for the dynamical time evolution of the HIC \rightarrow transport models
- dynamical modeling of cluster formation based on interactions
- Cluster formation is sensitive to nucleon dynamics
- ➔ One needs to keep the nucleon correlations (initial and final) by realistic nucleon-nucleon interactions in transport models:
- QMD (quantum-molecular dynamics) allows to keep correlations
- MF (mean-field based models) correlations are smeared out

A. Andronic et al., PLB 697, 203 (2011)

QMD dynamics for baryons (in PHQMD):

Equation-of-motions: based on quantummechanical Hamiltonian formulation from the Ritz variational principle Propagate: Gaussian wave functions (Ansatz) in 6+1 dimensions (r, p + time)

Consequences:

- □ Non-relativistic consideration
- □ Non-covariant formulation
- →Relativistic extension of QMD is lacking for the assumptions (hopefully acceptable for the goals here)
- □ N-body dynamics is realized by 2 body forces between all baryons in the system
 ⊕ → allows to keep correlations

BUU dynamics for baryons (cf. PHSD):

Equation-of-Motions: based on field theoretical equations-of-motion -BUU equation is the on-shell limit of the Kadanoff-Baym many-body theory Propagate: Green functions – in KB and f(x,p) – single-particle distribution functions in BUU; n=8 dimensions [(r,t) (E,p)]

Consequences:

- Relativistic consideration
- Covariant formulation
- N-body dynamics is reduced to mean-field dynamics in the self generated mean-field potential + off-shell interactions
- ⇔ → loosing higher order correlations (not very relevant for the "bulk" dynamics!)

N-body correlations are important for cluster formation !

PHQMD

The goal: to develop a unified n-body microscopic transport approach for the description of heavy-ion dynamics and dynamical cluster formation from low to ultra-relativistic energies

<u>Realization:</u> combined model **PHQMD = (PHSD & QMD) & SACA**

collision integral → PHQMD

Initial A+A collision Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Initial A+A collisions :

N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons

Partonic phase

Partonic phase - QGP:

Given Stage Formation of QGP stage if local $\varepsilon > \varepsilon_{critical}$:

dissolution of pre-hadrons \rightarrow partons

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

- Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential
 - Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

Hadronic phase: hadron-hadron interactions – off-shell HSD

Initial conditions of PHQMD

Cluster formation is sensitive to the initial correlations of nucleons → Initialization of a nucleus:

the initial distributions of nucleons in projectile and target has to be carefully modelled:

- Right density distribution
- Right binding energy to guarantee the stability of nuclei
- □ Initialization in coordinate space: Wood-Saxon distribution:

Initialization in momentum space: Thomas-Fermi distribution p<p_F with the additional requirement that nucleons are bound:

$$0 \le \sqrt{m^2 + \mathbf{p_{i0}}^2(t=0)} - m \le - \langle V(\mathbf{r_{i0}}) \rangle$$

QMD propagation

Generalized Ritz variational principle: $\delta \int_{t_1}^{t_2} dt < \psi(t) |i \frac{d}{dt} - H|\psi(t) >= 0.$

Assume that $\Psi_N = \prod_{i=1}^{N} f(r_i, p_i, r_{i0}, p_{i0}, t)$ for N particles (neglecting antisymmetrization !) single-particle Wigner density of the nucleon "*i*"

Trial wave function for one particle "*i*": Gaussian with width *L* centered at r_{i0} , p_{i0}

L=4.33 fm²

$$f(\mathbf{r_{i}}, \mathbf{p_{i}}, \mathbf{r_{i0}}, \mathbf{p_{i0}}, t) = \frac{1}{\pi^{3}\hbar^{3}} e^{-\frac{2}{L}(\mathbf{r_{i}} - \mathbf{r_{i0}}(t))^{2}} e^{-\frac{L}{2\hbar^{2}}(\mathbf{p_{i}} - \mathbf{p_{i0}}(t))^{2}}$$

Equations-of-motion (EoM) for Gaussian centers in coordinate and momentum space:

$$\dot{r_{i0}} = \frac{\partial \langle H \rangle}{\partial p_{i0}}$$
 $\dot{p_{i0}} = -\frac{\partial \langle H \rangle}{\partial r_{i0}}$

Hamiltonian:
$$H = \sum_{i} H_{i} = \sum_{i} (T_{i} + V_{i}) = \sum_{i} (T_{i} + \sum_{j \neq i} V_{i,j})$$

 $V_{i,j} = V(\mathbf{r_{i}}, \mathbf{r_{j}}, \mathbf{r_{i0}}, \mathbf{r_{j0}}, t) = V_{\text{Skyrme}} + V_{\text{Coul}}$

QMD interaction potential and EoS

The expectation value of the Hamiltonian:

$$\langle H \rangle = \langle T \rangle + \langle V \rangle = \sum_{i} (\sqrt{p_{i0}^2 + m^2} - m) + \sum_{i} \langle V_{Skyrme}(\mathbf{r_{i0}}, t) \rangle$$

Skyrme potential - scalar ('static') * :

$$\langle V_{Skyrme}(\mathbf{r_{i0}},t)\rangle = \alpha \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right) + \beta \left(\frac{\rho_{int}(\mathbf{r_{i0}},t)}{\rho_0}\right)^2$$

modifed interaction density (with relativistic extension):

$$\begin{split} \rho_{int}(\mathbf{r_{i0}},t) &\to C \sum_{j} (\frac{4}{\pi L})^{3/2} \mathrm{e}^{-\frac{4}{L}(\mathbf{r_{i0}^{T}}(t) - \mathbf{r_{j0}^{T}}(t))^{2}} \\ &\times \mathrm{e}^{-\frac{4\gamma_{cm}^{2}}{L}(\mathbf{r_{i0}^{L}}(t) - \mathbf{r_{j0}^{L}}(t))^{2}}, \end{split}$$

- ♦ HIC \leftarrow → EoS for infinite matter at rest
- compression modulus K of nuclear matter:

$$K = -V\frac{dP}{dV} = 9\rho^2 \frac{\partial^2 (E/A(\rho))}{(\partial\rho)^2}|_{\rho=\rho_0}.$$

Work in progress: implementation of momentum dependent potentials

First PHQMD results on ,bulk' observables

arXiv:1907.03860

PHQMD: ,bulk' dynamics at AGS/FAIR/NICA energies

The rapidity and m_T distributions for protons from 5% central Au+Au collisions at 4, 6, 8, 10.7 A GeV

the influence of EoS is slightly visible in rapidity spectra of protons

■ m_T spectra of protons from PHQMD with a 'hard' EoS are harder then with 'soft' EoS

□ PHQMD results for the m_T spectra with 'soft' EoS are in a good agreement with the PHSD spectra (using 'soft' EoS in default PHSD4.0 version)

→ QMD and MF dynamics gives similar results with similar EoS

PHQMD: ,bulk' dynamics at AGS/FAIR/NICA energies

The rapidity and m_T distributions for π^+ , K⁺, K⁻, $\Lambda + \Sigma^0$ from 5% central Au+Au collisions at 4, 6, 8, 10.7 A GeV

U the influence of EoS is slightly visible in rapidity and m_T spectra of newly produced hadrons

PHQMD: ,bulk' dynamics at RHIC BES

PHQMD: good agreement with **RHIC BES** exp. data

PHQMD: ,bulk' dynamics at SPS

The rapidity and m_T distributions for protons from 7% central Pb+Pb collisions at 20, 40, 80, 158 A GeV

PHQMD: stopping is controlled by exp. data very weak dependence on baryonic potential

PHQMD: ,bulk' dynamics at SPS

The rapidity and m_T distributions for π^- , K⁺, K⁻, Λ + Σ^0 from 7% central Pb+Pb collisions at 20, 40, 80, 158 A GeV

PHQMD: good agreement with exp. data - similar to PHSD - since at high energies the dynamics is dominated by collisions rather than potential interactions!

PHQMD: ,bulk' dynamics at RHIC

The rapidity and p_T distributions for p, anti-p, π^- , K⁺, K⁻, $\Lambda + \Sigma^0$, anti($\Lambda + \Sigma^0$) from 5% central Au+Au collisions at s^{1/2} = 200 GeV

PHQMD: results are similar to PHSD - since at RHIC energies the dynamics is dominated by collisions of partons/hadrons rather than nuclear potential interactions!

Clusters in PHQMD: MST & SACA

arXiv:1907.03860

Cluster recognition: Minimum Spanning Tree (MST)

The Minimum Spanning Tree (MST) is a cluster recognition method applicable for the (asymptotic) final states where coordinate space correlations may only survive for bound states.

The MST algorithm searches for accumulations of particles in coordinate space:

1. Two particles are 'bound' if their distance in coordinate space fulfills

 $\left| \vec{r}_i - \vec{r}_j \right| \le 2.5 \, fm$

2. Particle is bound to a cluster if it bounds with at least one particle of the cluster.

* Remark:

inclusion of an additional momentum cuts (coalescence) lead to a small changes: particles with large relative momentum are mostly not at the same position

R. K. Puri, J. Aichelin, J.Comp. Phys. 162 (2000) 245-266

Simulated Annealing Clusterization Algorithm (SACA)

Basic ideas of clusters recognition by SACA:

Based on idea by Dorso and Randrup (Phys.Lett. B301 (1993) 328)

- > Take the positions and momenta of all nucleons at time t
- Combine them in all possible ways into all kinds of clusters or leave them as single nucleons
- > Neglect the interaction among clusters
- Choose that configuration which has the highest binding energy:

If E' < E take a new configuration

If E' > E take the old configuration with a probability depending on E'-E Repeat this procedure many times

→ Leads automatically to finding of the most bound configurations

R. K. Puri, J. Aichelin, PLB301 (1993) 328, J.Comput.Phys. 162 (2000) 245-266; P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390

Cluster recognition by SACA

SACA searches for the most bound configurations → clusters Clusters are bound by potential interactions between nucleons V_i V_i – Skyrme potential (as in PHQMD!)

□ Binding energy (SACA) vs. Weizsaecker formula

There are two kinds of clusters:

I) Heavy clusters formed from spectator matter close to beam and target rapidity:

- initial-final state correlations
- HIC makes spectator matter unstable

II) Light clusters formed from participant matter created during the expansion of the fireball →

"ice" (E_{bind} ≈-8 MeV/N) in "fire"(T≥ 100 MeV)

- origin is not well understood
- seen from SIS to RHIC
- quantum effects may be important

➔ average binding energy of the clusters identified by SACA at late times (>100 fm/c) is in agreement with Weizsaecker formula

Time evolution: Au+Au, b=2 fm, 600 AGeV PHQMD

21

PHQMD: light clusters and ,bulk' dynamics at SIS

Scaled rapidity distribution $y_0 = y/y_{proj}$ in central Au+Au reactions at 1.5 AGeV

- > 30% of protons are bound in clusters at 1.5 A GeV
- Presently MST is better identifying light clusters than SACA
 - → To improve in SACA: more realistic potentials for small clusters, quantum effects

Pion spectra are sensitive to EoS: better reproduced by PHQMD with a 'hard' EoS
PHQMD with soft EoS is consistent with PHSD (default – soft EoS)

* To improve in PHQMD: momentum dependent potentials

PHQMD: light clusters at AGS energies

The invariant multiplicities for p, d, t, ³He, ⁴He at p_T <0.1 GeV versus rapidity

Au+Au, 11 AGeV, minimal bias

PHQMD: clusters recognition by **MST** provides a reasonable description of exp. data on light clusters at AGS energies

PHQMD: heavy clusters

PHQMD results (with a hard EoS and MST algorithm) for the rapidity distributions of all charges, Z = 1 particles, Z=2, Z>2, as well as Λ 's, hypernuclei A₄ and A>4 for Au+Au at 4 and 10AGeV

The multiplicity of light hypercluster vs. impact parameter b for Au+Au, 4 AGeV

❑ Central collisions → light hypernuclei ❑ Peripheral collisions → heavy hypernuclei

Penetration of Λ 's, produced at midrapidity, to target/projectile region due to rescattering

→ Possibility to study AN interaction

PHQMD: collectivity of clusters

PHQMD with hard EoS, with SACA: v₁ of light clusters (A=1,2,3,4) vs rapidity for mid-central Au+Au at 600 AMeV, 4AGeV

- v₁: quite different for nucleons and clusters (as seen in experiments)
- Nucleons come from participant regions (-> small density gradient) while clusters from interface spectator-participant (strong density gradient)
- □ v_1 increases with E_{beam} □ → larger density gradient

The **PHQMD** is a microscopic n-body transport approach for the description of heavy-ion dynamics and cluster formation

combined model PHQMD = (PHSD & QMD) & SACA

PHQMD

- provides the good description of hadronic 'bulk' observables from SIS to RHIC energies
- shows sensitivity to EoS: m_T spectra of baryons
- predicts the dynamical formation of clusters from low to ultra-relativistic energies
- allows to understand the proton spectra and the properties of clusters (dn/dp_Tdy, v₁,v₂, fluctuations)
- allows to understand clusters formation in the participant and spectator region (consistent with available cluster data by ALADIN collaboration)
- allows to understand the formation of hypernuclei

Thank you for your attention !

Thanks to the Organizers !

