The Hypertriton $\binom{3}{\Lambda}$ H) Lifetime Puzzle EMMI Workshop on exotica, Wroclaw, Dec. 2019 Avraham Gal, Hebrew University, Jerusalem

• Background

(i) Experimental: from emulsion & bubble chambers to relativistic heavy-ion collisions;
(ii) Theoretical: from Rayet-Dalitz (1966),
Congleton (1992), to Kamada et al. (1998).

- Pion final-state interaction (FSI) enhances decay rate: Gal–Garcilazo, PLB 791 (2019) 48.
- Σ admixtures in ${}^{3}_{\Lambda}$ H reduce decay rate: Pérez-Obiol–Gazda–Friedman–Gal (ongoing).
- Lifetimes of ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He & ${}^{3}_{\Lambda}$ n, if stable.

Summary of ${}^{A}_{\Lambda}$ Z hypernuclear lifetimes

Agnello-Botta-Bressani-Bufalino-Feliciello, NPA 954 (2016) 176

- $\Lambda \rightarrow N\pi$, $\approx 99.7\%\Gamma_{\Lambda}$, replaced for $A \gg 1$ to $\approx 125\%\Gamma_{\Lambda}$ by $\Lambda N \rightarrow NN$; yet, $\Gamma(^{3}_{\Lambda}H \rightarrow NNN)$ is only $\sim 1.7\%\Gamma_{\Lambda}$ as calculated by Golak et al., PRC 56 (1997) 2892.
- Delayed fission: $\tau_{A \gg 1} \begin{pmatrix} A \\ \Lambda \end{pmatrix} \approx 210 \pm 10 \text{ ps} (\tau_{\Lambda} = 263 \pm 2 \text{ ps})$ [Jlab E02-017: X. Qiu, L. Tang, et al. NPA 973 (2018) 116].

${}^{3}_{\Lambda}$ H lifetime puzzle

World average of measured $\tau(^{3}_{\Lambda}\text{H})$ is shorter $\sim 30\pm10\%$ w.r.t. $\tau_{\Lambda}=263\pm2$ ps. Note recent UR-HI experiments: STAR, Au-Au @200 GeV: PRC 97 (2018) 054909, $\tau=142^{+24}_{-21}\pm29$ ps. ALICE, Pb-Pb @5 TeV: PLB 797 (2019) 134905, $\tau=242^{+34}_{-38}\pm17$ ps. Given a tiny $B_{\Lambda}=0.13\pm0.05$ MeV, why is $\tau(^{3}_{\Lambda}\text{H})\ll\tau_{\Lambda}$?

Is there a ${}^3_{\Lambda}$ H lifetime puzzle?

E. Bartsch for ALICE at Quark Matter 2019 Wuhan, China, Nov. 2019

$^{3}_{\Lambda}$ H lifetime calculations w/o pion FSI

Source	Method	\mathbf{R}_3	$\Gamma(^3_{\Lambda}{f H})/\Gamma_{\Lambda}$
Experiment	R ₃ : He BC	$0.35{\pm}0.04$	$\sim 1.40{\pm}0.15$
Rayet-Dalitz $(1966)^*$	$\mathbf{closure}$ - $\Lambda \mathbf{pn}$	_	$1.05 \ 1.14$
Congleton (1992)	$\mathbf{closure}$ - $\Lambda \mathbf{d}$	$0.33{\pm}0.02$	$1.14 \ 1.15$
Kamada et al (1998)	full Faddeev	0.379	1.03 1.06
Gal-Garcilazo (2018)**	$\mathbf{closure}$ - $\Lambda \mathbf{pn}$	0.357	1.11 1.11

- $\mathbf{R}_3 = \Gamma(^3_{\Lambda}\mathbf{H} \rightarrow \pi^- + {}^3\mathbf{H}\mathbf{e})/\Gamma(^3_{\Lambda}\mathbf{H} \rightarrow \pi^- + \mathbf{all}) \Rightarrow J = \frac{1}{2}.$ Dalitz (73): $\mathbf{R}_3 = \sqrt{B_{\Lambda}}(1.07 \cdot 0.60\sqrt{B_{\Lambda}} + 0.27B_{\Lambda}),$ so $\mathbf{R}_3 = 0.35 \pm 0.04 \Rightarrow \mathbf{B}_{\Lambda}(^3_{\Lambda}\mathbf{H}) = 0.16^{+0.05}_{-0.04}$ MeV.
- *Closure: $\Gamma(^{3}_{\Lambda}\mathbf{H})/\Gamma_{\Lambda}=1+0.14\sqrt{B_{\Lambda}}$ up to phase space factor boosting decay rate by (5–10)%.
- **PLB 791 (2019) 48, pion FSI effect: $1.11 \rightarrow 1.23$.

Closure approximation calculations

$$\Gamma_{\Lambda}(q) = \frac{q}{1 + \omega_{\pi}/E_{N}} (|s_{\pi}|^{2} + |p_{\pi}|^{2} \frac{q^{2}}{q_{\Lambda}^{2}}), \quad \left|\frac{p_{\pi}}{s_{\pi}}\right|^{2} \approx 0.132 \ (0.203)$$

$$\Gamma_{\Lambda}^{J=1/2} = \frac{\bar{q}}{1 + \omega_{\pi}/E_{3N}} [|s_{\pi}|^{2}(1 + \frac{1}{2}\eta(\bar{q})) + |p_{\pi}|^{2}(\frac{\bar{q}}{q_{\Lambda}})^{2}(1 - \frac{5}{6}\eta(\bar{q}))]$$

$$\eta(q) = \int \psi_{\Lambda}^{3}_{\mathrm{H}}(\Lambda; 2, 3) \exp(i\vec{q} \cdot \vec{r}_{\Lambda 2}) \psi_{\Lambda}^{*}_{\mathrm{H}}(2; \Lambda, 3); \text{ exchange.}$$
Gal-Garcilazo: $\eta(\bar{q}) = 0.14 \pm 0.03, \rightarrow 0$ upon $B_{\Lambda} \rightarrow 0$.

$$\Gamma_{\Lambda}^{J=3/2} = \frac{\bar{q}}{1 + \omega_{\pi}/E_{3N}} [|s_{\pi}|^{2}(1 - \eta(\bar{q})) + |p_{\pi}|^{2}(\frac{\bar{q}}{q_{\Lambda}})^{2}(1 - \frac{1}{3}\eta(\bar{q}))]$$

$$\Gamma_{\Lambda}^{J=1/2} \approx \frac{q_{\Lambda}}{1 + \omega_{\pi}/E_{3N}} 0.641 \ (|s_{\pi}|^{2} + |p_{\pi}|^{2})$$

$$\Gamma(_{\Lambda}^{3}\mathbf{n})/\Gamma_{\Lambda} \approx 1.114 \times 0.641 = 0.714, \quad \tau(_{\Lambda}^{3}\mathbf{n}) \approx 368 \ \mathrm{ps},$$
compared to $181^{+30}_{-24} \pm 25 \ \mathrm{ps} \ \mathrm{or} \ 190^{+47}_{-35} \pm 36 \ \mathrm{ps} \ \mathrm{from \ HypHI}.$

Does closure make sense?

Kamada et al. PRC 57 (1998) 1595

³_AH differential decay rates to p+d & p+p+n, w & w/o 3N FSI, and their sum with FSI (solid curve). Most events in [96-104] MeV/c k_{π} interval, resulting in $\delta\Gamma/\Gamma \approx \pm 4\%$, mostly from closure momentum \bar{q} . Pion FSI: s-wave $\pi \mathbf{N}$ (Gal-Garcilazo) $V_{\text{opt}}^{\pi^-} = -\frac{4\pi}{2\mu_{\pi N}} \left(b_0 [\rho_n(r) + \rho_p(r)] + b_1 [\rho_n(r) - \rho_p(r)] \right)$ π^- atoms fits: $b_0 \approx -0.02 \, m_{\pi}^{-1}$, $b_1 \approx -0.12 \, m_{\pi}^{-1}$

- Repulsive for $N \ge Z$, not in π^{-1} H & π^{-3} He as confirmed by attractive 1s level shifts.
- Repulsive FSI in the π^{0} ³H decay channel. Summed FSI in total ${}^{3}_{\Lambda}$ H decay rate nearly zero.
- Δ*I*=1/2 rule: coherent I=1/2 (π⁻³He—π⁰³H), so isovector term gives attractive -2b₁.
- $\Gamma(^{3}_{\Lambda}\mathrm{H})/\Gamma_{\Lambda}$: 1.11 (no FSI) \Rightarrow 1.23 (pion FSI); with pion FSI: $\tau(^{3}_{\Lambda}\mathrm{H})=214\pm8$ ps.
- World average: $\tau(^3_{\Lambda}\mathbf{H})=206^{+15}_{-13}$ ps.

Pion FSI: adding p waves (ongoing) $\delta V_{\text{opt}}^{\pi^-} \propto \left(\vec{\nabla} \cdot [c_0(\rho_n + \rho_p) + c_1(\rho_n - \rho_p)] \vec{\nabla} \right) / (\text{EELL renorm.})$

 π^{-} atoms fits: $c_0 = 0.23 m_{\pi}^{-3}$, $c_1 = 0.16 m_{\pi}^{-3}$ (πN values)

- Attractive for $N \ge Z$, but in ${}^{3}_{\Lambda}\mathbf{H} \to \pi^{-}+{}^{3}\mathbf{He}$, for $\mathbf{p}_{\pi}\sim \mathbf{100} \ \mathbf{MeV/c}$, c_{1} yields repulsion that cancels out most of the attraction from b_{1} .
- The attractive c_0 overcomes the repulsive b_0 , producing robust attractive pion FSI that enhances $\Gamma(^3_{\Lambda}H)$ by (10-20)%.
- Ongoing: Pérez-Obiol, Gazda, Friedman, Gal, where, furthermore, Σ admixtures of less than 1% reduce $\Gamma(^{3}_{\Lambda}H)$ by ~10%.

Addendum: ${}^{4}_{\Lambda}$ H & ${}^{4}_{\Lambda}$ He lifetimes

$$\begin{split} &\Gamma(^{4}_{\Lambda}\mathrm{H})/\Gamma_{\Lambda}\approx\frac{3}{2}\times(\frac{2}{3}\times0.7+1\times0.3)+0.25=1.40\\ &\Gamma(^{4}_{\Lambda}\mathrm{He})/\Gamma_{\Lambda}\approx\frac{3}{2}\times(\frac{1}{3}\times0.7+1\times0.3)+0.25=1.05\\ &\mathbf{Input:}\ \frac{3}{2}\ \mathbf{for}\ \mathbf{nuclear}\ \mathbf{structure},\ \mathbf{R}_{4}{=}\mathbf{0.7}\\ &\frac{2}{3}\ \&\ \frac{1}{3}\ \mathbf{for}\ \pi^{-}\ \mathbf{or}\ \pi^{0}\ \mathbf{and}\ ^{4}\mathbf{He},\ \Gamma_{\mathrm{n.m.}}/\Gamma_{\Lambda}\approx\mathbf{0.25}\\ &\Rightarrow\ \tau(^{4}_{\Lambda}\mathrm{H})\approx\mathbf{190}\ \mathbf{ps},\quad \tau(^{4}_{\Lambda}\mathrm{He})\approx\mathbf{250}\ \mathbf{ps}\\ &\mathbf{in\ rough\ agreement\ with\ measured\ lifetimes.}\\ &\mathbf{Looks\ like\ Lifetime\ Puzzle\ is\ limited\ to\ ^{3}_{\Lambda}\mathbf{H}. \end{split}$$

 For A≥12, τ(^A_ΛZ)~200 ps, from KEK and very recently from HKS JLab E02-E017: NPA 973 (2018) 116. Lifetime is due to ΛN→NN.

Summary & Outlook

- Pion FSI makes ${}^{3}_{\Lambda}$ H decay faster by (10–20)%.
- Σ admixtures in ${}^{3}_{\Lambda}$ H reduce $\Gamma({}^{3}_{\Lambda}$ H) by ~10%.
- Provided these contributions cancel largely each other, one remains with a (5–10)% enhanced Γ(³_ΛH) w.r.t. Γ_Λ from phase-space and exchange factors.
- Future UR-HI experiments in both LHC and RHIC should resolve the discrepancy between ALICE and STAR τ(³_ΛH) determinations; need to lower measurement uncertainties, as just reported in QM2019 by ALICE.
- Rule out ${}^{3}_{\Lambda}n$ in forthcoming HI experiments.

- New prposed experiments at J-PARC on ³He: (i) P73: ³He(K⁻, π⁰)³_ΛH, Ma et al. (ii) P74: ³He(π⁻, K⁰)³_ΛH, Feliciello et al. Could be done also on ⁴He to study ⁴_ΛH decay.
- Establish resonance nature, if so, of ${}^{3}_{\Lambda}$ n at Jlab on 3 H target: 3 H(e, e' K^{+}) ${}^{3}_{\Lambda}$ n, as proposed and done by L. Tang et al. This might provide constraints on Λ n- Λ p CSB.
- Re-measure the ${}^{4}_{\Lambda}H-{}^{4}_{\Lambda}He$ complex (E13 \rightarrow E63) for refining future input to CSB calculations, and their consequences for p-shell hypernuclei.

Thanks for your attention!