Coalescence from correlation functions

Kfir Blum
CERN \& Weizmann Institute

EMMI Wroclaw 2019
$\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}$
O(1) prediction of coalescence (Hydro / Gaussian source model) R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

KB et al, Phys.Rev. D96 (2017) no.10, 103021

Closely related, and implied by, e.g.
H. Sato, K. Yazaki, Phys.Lett. B98 (1981)
P. Danielewicz, P. Schuck, Phys.Lett. B274 (1992)
S. Mrowczynski, Phys.Lett. B277 (1992)
$\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}$
O(1) prediction of coalescence (Hydro / Gaussian source model) R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

KB et al, Phys.Rev. D96 (2017) no.10, 103021

Closely related, and implied by, e.g.
H. Sato, K. Yazaki, Phys.Lett. B98 (1981)
P. Danielewicz, P. Schuck, Phys.Lett. B274 (1992)
S. Mrowczynski, Phys.Lett. B277 (1992)

I was a little child when these papers were written.

Little did I know, that I was about to get in trouble in Wroclaw 2019 over them.

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

O(1) prediction of coalescence (Hydro / Gaussian source model) R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

KB et al, Phys.Rev. D96 (2017) no.10, 103021
KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

O(1) prediction of coalescence (Hydro / Gaussian source model) R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

KB et al, Phys.Rev. D96 (2017) no.10, 103021
KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

KB et al, Phys.Rev. D96 (2017) no.10, 103021
KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

KB et al, Phys.Rev. D96 (2017) no.10, 103021
KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

KB et al, Phys.Rev. D96 (2017) no.10, 103021
KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

Questions:

1. Where are the hydro model parameters?

KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

Questions:

1. Where are the hydro model parameters?
2.

arXiv:1904.06592

Hydrodynamic flow in small systems
 or: "How the heck is it possible that a system emitting only a dozen particles can be described by fluid dynamics?"

Ulrich Heinz ${ }^{1 a}$, in collaboration with J. Scott Moreland ${ }^{b}$
${ }^{a}$ Department of Physics, The Ohio State University, Columbus, OH 43210-1117, USA
${ }^{b}$ Department of Physics, Duke University, Durham, NC 27708-0305, USA
E-mail: heinz.9@osu.edu

Abstract. The "unreasonable effectiveness" of relativistic fluid dynamics in describing high energy heavy-ion and even proton-proton collisions will be demonstrated and discussed. Several recent ideas of optimizing relativistic fluid dynamics for the specific challenges posed by such collisions will be presented, and some thoughts will be offered why the framework works better than originally expected. I will also address the unresolved question where exactly hydrodynamics breaks down, and why.

KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

High excitation state (HXS)

$$
\psi_{P_{d}}\left(x_{1}, x_{2}\right)=e^{i \vec{P}_{d} \vec{X}} \phi_{d}(\vec{r})
$$

$$
\frac{d N_{d}}{d^{3} P_{d}}=\left\langle\psi_{P_{d}}\right| \hat{\rho}_{\mathrm{HX}}\left|\psi_{P_{d}}\right\rangle
$$

$$
\psi_{P_{d}}\left(x_{1}, x_{2}\right)=e^{i \vec{P}_{d} \vec{X}} \phi_{d}(\vec{r})
$$

$$
\begin{aligned}
\frac{d N_{d}}{d^{3} P_{d}}= & \left\langle\psi_{P_{d}}\right| \hat{\rho}_{\mathrm{HX}}\left|\psi_{P_{d}}\right\rangle \\
= & G_{d} \int d^{3} x_{1} \int d^{3} x_{2} \int d^{3} x_{1}^{\prime} \int d^{3} x_{2}^{\prime} \times \\
& \psi_{P_{d}}^{*}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \psi_{P_{d}}\left(x_{1}, x_{2}\right) \rho_{2}\left(x_{1}^{\prime}, x_{2}^{\prime} ; x_{1}, x_{2} ; t_{f}\right)
\end{aligned}
$$

$$
\psi_{P_{d}}\left(x_{1}, x_{2}\right)=e^{i \vec{P}_{d} \vec{X}} \phi_{d}(\vec{r})
$$

$$
\begin{aligned}
\frac{d N_{d}}{d^{3} P_{d}}= & \left\langle\psi_{P_{d}}\right| \hat{\rho}_{\mathrm{HX}}\left|\psi_{P_{d}}\right\rangle \\
= & G_{d} \int d^{3} x_{1} \int d^{3} x_{2} \int d^{3} x_{1}^{\prime} \int d^{3} x_{2}^{\prime} \times \\
& \psi_{P_{d}}^{*}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \psi_{P_{d}}\left(x_{1}, x_{2}\right) \rho_{2}\left(x_{1}^{\prime}, x_{2}^{\prime} ; x_{1}, x_{2} ; t_{f}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{2}\left(x_{1}^{\prime}, x_{2}^{\prime} ; x_{1}, x_{2} ; t\right) \approx \rho_{1}\left(x_{1}^{\prime}, x_{1} ; t\right) \rho_{1}\left(x_{2}^{\prime}, x_{2} ; t\right) \\
& \rho_{1}\left(x, x^{\prime} ; t\right)=\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \vec{k}\left(\vec{x}^{\prime}-\vec{x}\right)} f_{1}^{W}\left(\vec{k}, \frac{\vec{x}+\vec{x}^{\prime}}{2} ; t\right)
\end{aligned}
$$

$$
\mathcal{D}_{d}(\vec{q}, \vec{r})=\int d^{3} \zeta e^{-i \vec{q} \vec{\zeta}} \phi_{d}\left(\vec{r}+\frac{\vec{\zeta}}{2}\right) \phi_{d}^{*}\left(\vec{r}-\frac{\vec{\zeta}}{2}\right)
$$

$$
\begin{aligned}
\frac{d N_{d}}{d^{3} P_{d}}= & G_{d} \int d^{3} R \int \frac{d^{3} q}{(2 \pi)^{3}} \int d^{3} r \mathcal{D}_{d}(\vec{q}, \vec{r}) \times \\
& f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}+\vec{q}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}-\vec{q}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
\end{aligned}
$$

$$
\left|\phi_{d}(\vec{r})\right|^{2}=\int d^{3} k e^{i \vec{k} \vec{r}} \mathcal{D}(\vec{k})
$$

$$
\begin{aligned}
\frac{d N_{d}}{d^{3} P_{d}} \approx & G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \int d^{3} R \int d^{3} r e^{i \vec{q} \vec{r}} \times \\
& f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
\end{aligned}
$$

$$
\left|\phi_{d}(\vec{r})\right|^{2}=\int d^{3} k e^{i \vec{k} \vec{r}} \mathcal{D}(\vec{k})
$$

$$
\begin{aligned}
\frac{d N_{d}}{d^{3} P_{d}} \approx & G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \int d^{3} R \int d^{3} r e^{i \vec{q} \vec{r}} \times \\
& f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
\end{aligned}
$$

$$
\psi_{p_{1}, p_{2}}^{s}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}} e^{2 i \vec{P} \vec{X}}\left(e^{i \vec{q} r / 2}-e^{-i \vec{q} r / 2}\right)
$$

$$
\begin{aligned}
\frac{d N^{s}}{d^{3} p_{1} d^{3} p_{2}}= & \left\langle\psi_{p_{1}, p_{2}}^{s}\right| \hat{\rho}_{\mathrm{HX}}\left|\psi_{p_{1}, p_{2}}^{s}\right\rangle \\
= & G_{2}^{s} \int d^{3} x_{1} \int d^{3} x_{2} \int d^{3} x_{1}^{\prime} \int d^{3} x_{2}^{\prime} \\
& \psi_{p_{1}, p_{2}}^{s *}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \psi_{p_{1}, p_{2}}^{s}\left(x_{1}, x_{2}\right) \rho_{2}\left(x_{1}^{\prime}, x_{2}^{\prime} ; x_{1}, x_{2} ; t_{f}\right)
\end{aligned}
$$

$$
\left|\phi_{d}(\vec{r})\right|^{2}=\int d^{3} k e^{i \vec{k} \vec{r}} \mathcal{D}(\vec{k})
$$

$$
\begin{aligned}
\frac{d N_{d}}{d^{3} P_{d}} \approx & G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \int d^{3} R \int d^{3} r e^{i \vec{q} r} \times \\
& f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
\end{aligned}
$$

$$
\psi_{p_{1}, p_{2}}^{s}\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}} e^{2 i \vec{P} \vec{X}}\left(e^{i \vec{q} \vec{r} / 2}-e^{-i \vec{q} \vec{r} / 2}\right)
$$

$$
\frac{d N^{s}}{d^{3} p_{1} d^{3} p_{2}}=G_{2}^{s}\left(\mathcal{A}_{2}\left(p_{1}, p_{2}\right)-\mathcal{F}_{2}(P, q)\right)
$$

$$
\mathcal{F}_{2}(P, q)=\int d^{3} R \int d^{3} r e^{i \vec{q} \vec{r}} \times
$$

$$
f_{1}^{W}\left(\vec{P}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\vec{P}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
$$

$\mathcal{A}_{2}\left(p_{1}, p_{2}\right)=\int d^{3} x f_{1}^{W}\left(\vec{p}_{1}, \vec{x} ; t_{f}\right) \int d^{3} x f_{1}^{W}\left(\vec{p}_{2}, \vec{x} ; t_{f}\right)$

$$
\begin{aligned}
\frac{d N_{d}}{d^{3} P_{d}} \approx & G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \int d^{3} R \int d^{3} r e^{i \vec{q} \vec{r}} \times \\
& f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
\end{aligned}
$$

$$
\frac{d N^{s}}{d^{3} p_{1} d^{3} p_{2}}=G_{2}^{s}\left(\mathcal{A}_{2}\left(p_{1}, p_{2}\right)-\mathcal{F}_{2}(P, q)\right),
$$

$$
\mathcal{F}_{2}(P, q)=\int d^{3} R \int d^{3} r e^{i \vec{q} \vec{r}} \times
$$

$$
f_{1}^{W}\left(\vec{P}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\vec{P}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
$$

$$
\frac{d N_{d}}{d^{3} P_{d}} \approx \begin{aligned}
& G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \int d^{3} R \int d^{3} r e^{i \vec{q} \vec{r}} \times \\
& f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\frac{\vec{P}_{d}}{2}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d N^{s}}{d^{3} p_{1} d^{3} p_{2}}=G_{2}^{s}\left(\mathcal{A}_{2}\left(p_{1}, p_{2}\right)-\mathcal{F}_{2}(P, q)\right), \\
& \mathcal{F}_{2}(P, q)=\int d^{3} R \int d^{3} r e^{i \vec{q} \vec{r}} \times \\
& f_{1}^{W}\left(\vec{P}, \vec{R}+\frac{\vec{r}}{2} ; t_{f}\right) f_{1}^{W}\left(\vec{P}, \vec{R}-\frac{\vec{r}}{2} ; t_{f}\right)
\end{aligned}
$$

$$
\frac{d}{d^{3} R}\left(\frac{d N_{d}}{d^{3} P_{d}}\right) \approx G_{d} \frac{d}{d^{3} R} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{F}_{2}\left(\frac{\vec{P}_{d}}{2}, \vec{q}\right)
$$

$$
\frac{d}{d^{3} R}\left(\frac{d N_{d}}{d^{3} P_{d}}\right) \approx G_{d} \frac{d}{d^{3} R} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{F}_{2}\left(\frac{\vec{P}_{d}}{2}, \vec{q}\right)
$$

relativistic flow:

$$
\gamma_{d} \int d^{3} R f_{d} \rightarrow(1 / 2 m) \int\left[d^{3} \sigma_{\mu} P_{d}^{\mu}\right] f_{d}
$$

$$
\left(\frac{d N_{d}}{d^{3} P_{d}}\right) \approx G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{F}_{2}\left(\frac{\vec{P}_{d}}{2}, \vec{q}\right)
$$

relativistic flow:

$$
\gamma_{d} \int d^{3} R f_{d} \rightarrow(1 / 2 m) \int\left[d^{3} \sigma_{\mu} P_{d}^{\mu}\right] f_{d}
$$

$$
\begin{gathered}
\left(\frac{d N_{d}}{d^{3} P_{d}}\right) \approx G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{F}_{2}\left(\frac{\vec{P}_{d}}{2}, \vec{q}\right) \\
\mathcal{B}_{2}(p)=\frac{P_{d}^{0} \frac{d N_{d}}{d^{3} P_{d}}}{\left(p^{0} \frac{d N}{d^{3} p}\right)^{2}} \quad C_{2}(P, q)=\frac{p_{1}^{0} p_{2}^{0} \frac{d N}{d^{3} p_{1} d^{3} p_{2}}}{\left(p_{1}^{0} \frac{d N}{d^{3} p_{1}}\right)\left(p_{2}^{0} \frac{d N}{d^{3} p_{2}}\right)}
\end{gathered}
$$

$$
\left(\frac{d N_{d}}{d^{3} P_{d}}\right) \approx G_{d} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{F}_{2}\left(\frac{\vec{P}_{d}}{2}, \vec{q}\right)
$$

$$
\mathcal{B}_{2}(p)=\frac{P_{d}^{0} \frac{d N_{d}}{d^{3} P_{d}}}{\left(p^{0} \frac{d N}{d^{3} p}\right)^{2}} \quad C_{2}(P, q)=1-\frac{G_{2}^{s}-G_{2}^{a}}{G_{2}^{s}+G_{2}^{a}} \mathcal{C}_{2}(P, q)
$$

$$
\frac{G_{d}}{G_{2}^{s}+G_{2}^{a}}=\frac{3}{3+1}
$$

$$
\mathcal{C}_{2}^{\mathrm{PRF}}(|\vec{q}| \ll m)=\frac{\mathcal{F}_{2}}{\mathcal{A}_{2}}
$$

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

$$
\mathcal{B}_{2}(p)=\frac{P_{d}^{0} \frac{d N_{d}}{d^{3} P_{d}}}{\left(p^{0} \frac{d N}{d^{3} p}\right)^{2}} \quad C_{2}(P, q)=1-\frac{G_{2}^{s}-G_{2}^{a}}{G_{2}^{s}+G_{2}^{a}} \mathcal{C}_{2}(P, q)
$$

$$
\frac{G_{d}}{G_{2}^{s}+G_{2}^{a}}=\frac{3}{3+1}
$$

$$
\mathcal{C}_{2}^{\mathrm{PRF}}(|\vec{q}| \ll m)=\frac{\mathcal{F}_{2}}{\mathcal{A}_{2}}
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

KB et al, Phys.Rev. D96 (2017) no.10, 103021
KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602
assumed: hydro model

$$
\begin{aligned}
& \eta_{l}(\tau, \eta, \rho)=\eta \quad \eta_{t}(\tau, \eta, \rho)=\eta_{f}\left(\frac{\rho}{\Delta \rho}\right)^{\alpha} \\
& f_{i}(R, P)=e^{\mu_{i} / T} e^{-P \cdot u(R) / T} H(R), \quad i=\mathrm{p}, \mathrm{n} \\
& H(R)=H(\eta, \rho)=\exp \left(-\frac{\rho^{2}}{2(\Delta \rho)^{2}}-\frac{\eta^{2}}{2(\Delta \eta)^{2}}\right)
\end{aligned}
$$

Hydrodynamic flow in small systems

or: "How the heck is it possible that a system emitting only a dozen particles can be described by fluid dynamics?"

Ulrich Heinz ${ }^{1 a}$, in collaboration with J. Scott Moreland ${ }^{b}$
${ }^{a}$ Department of Physics, The Ohio State University, Columbus, OH 43210-1117, USA
${ }^{b}$ Department of Physics, Duke University, Durham, NC 27708-0305, USA
E-mail: heinz.9@osu.edu

Abstract. The "unreasonable effectiveness" of relativistic fluid dynamics in describing high energy heavy-ion and even proton-proton collisions will be demonstrated and discussed. Several recent ideas of optimizing relativistic fluid dynamics for the specific challenges posed by such collisions will be presented, and some thoughts will be offered why the framework works better than originally expected. I will also address the unresolved question where exactly hydrodynamics breaks down, and why.

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

assumed: hydro model

$$
\begin{aligned}
& \eta_{l}(\tau, \eta, \rho)=\eta \quad \eta_{t}(\tau, \eta, \rho)=\eta_{f}\left(\frac{\rho}{\Delta \rho}\right)^{\alpha} \\
& f_{i}(R, P)=e^{\mu_{i} / T} e^{-P \cdot u(R) / T} H(R), \quad i=\mathrm{p}, \mathrm{n} \\
& H(R)=H(\eta, \rho)=\exp \left(-\frac{\rho^{2}}{2(\Delta \rho)^{2}}-\frac{\eta^{2}}{2(\Delta \eta)^{2}}\right)
\end{aligned}
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602
assumed: hydro model

$$
\begin{aligned}
& \eta_{l}(\tau, \eta, \rho)=\eta \quad \eta_{t}(\tau, \eta, \rho)=\eta_{f}\left(\frac{\rho}{\Delta \rho}\right)^{\alpha} \\
& f_{i}(R, P)=e^{\mu_{i} / T} e^{-P \cdot u(R) / T} H(R), \quad i=\mathrm{p}, \mathrm{n} \\
& H(R)=H(\eta, \rho)=\exp \left(-\frac{\rho^{2}}{2(\Delta \rho)^{2}}-\frac{\eta^{2}}{2(\Delta \eta)^{2}}\right)
\end{aligned}
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

assumed: hydro model

$$
\begin{aligned}
& \eta_{l}(\tau, \eta, \rho)=\eta \quad \eta_{t}(\tau, \eta, \rho)=\eta_{f}\left(\frac{\rho}{\Delta \rho}\right)^{\alpha} \\
& f_{i}(R, P)=e^{\mu_{i} / T} e^{-P \cdot u(R) / T} H(R), \quad i=\mathrm{p}, \mathrm{n} \\
& H(R)=H(\eta, \rho)=\exp \left(-\frac{\rho^{2}}{2(\Delta \rho)^{2}}-\frac{\eta^{2}}{2(\Delta \eta)^{2}}\right)
\end{aligned}
$$

hydro model gives Gaussian source:
Chapman, Nix, Heinz, Phys.Rev. C52 (1995) 2694-2703

$$
\mathcal{C}_{2}^{\mathrm{PRF}}=e^{-R_{\perp}^{2} \vec{q}_{\perp}^{2}-R_{\|}^{2} \vec{q}_{l}^{2}}
$$

$$
\begin{aligned}
\mathcal{R}_{\perp}\left(m_{t}\right) & =\frac{\Delta \rho}{\sqrt{1+\frac{m_{t}}{T} \eta_{f}^{2}}} \\
\mathcal{R}_{\|}\left(m_{t}\right) & =\frac{\tau_{0} \Delta \eta}{\sqrt{1+\frac{m_{t}}{T}(\Delta \eta)^{2}}}
\end{aligned}
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602
assumed: Gaussian Source Model (GSM) $\leadsto \mathcal{C}_{2}^{\mathrm{PRF}}=e^{-R_{\perp}^{2} \vec{q}_{\perp}^{2}-R_{\|}^{2} \vec{q}_{l}^{2}}$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602
assumed: Gaussian Source Model (GSM)
$\leadsto \mathcal{C}_{2}^{\mathrm{PRF}}=e^{-R_{\perp}^{2} \vec{q}_{\perp}^{2}-R_{\|}^{2} \vec{q}_{l}^{2}}$
assumed: $\quad \phi_{d}(\vec{r})=\frac{e^{-\frac{\vec{r}^{2}}{2 d^{2}}}}{\left(\pi d^{2}\right)^{\frac{3}{4}}} \longmapsto \mathcal{D}(\vec{k})=e^{-\frac{\vec{k}^{2} d^{2}}{4}}$

Coalescence from correlation functions:

$$
\begin{aligned}
& \text { With these } \\
& \text { assumptions: }
\end{aligned} \quad \mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}}}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602
assumed: Gaussian Source Model (GSM)

$$
\leadsto \mathcal{C}_{2}^{\mathrm{PRF}}=e^{-R_{\perp}^{2} \vec{q}_{\perp}^{2}-R_{\|}^{2} \vec{q}_{l}^{2}}
$$

assumed: $\quad \phi_{d}(\vec{r})=\frac{e^{-\frac{\vec{r}^{2}}{2 d^{2}}}}{\left(\pi d^{2}\right)^{\frac{3}{4}}}$

$$
\leadsto \mathcal{D}(\vec{k})=e^{-\frac{\vec{k}^{2} d^{2}}{4}}
$$

Coalescence from correlation functions:

With these assumptions:

$$
\mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}}}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\| \|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

$$
\begin{align*}
B_{2} & =\frac{3 \pi^{3 / 2}\left\langle\mathcal{C}_{\mathrm{d}}\right\rangle}{2 m_{t} \mathcal{R}_{\perp}^{2}\left(m_{t}\right) \mathcal{R}_{\|}\left(m_{t}\right)} \\
\left\langle\mathcal{C}_{\mathrm{d}}\right\rangle & \approx \frac{1}{\left(1+\left(\frac{d}{2 \mathcal{R}_{\perp}(m)}\right)^{2}\right) \sqrt{1+\left(\frac{d}{2 \mathcal{R}_{\|}(m)}\right)^{2}}} \tag{4.12}
\end{align*}
$$

Coalescence from correlation functions:

With these

$$
\mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}}}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

R. Scheibl, U. Heinz, Phys.Rev. C59 (1999) 1585-1602

$$
\begin{aligned}
B_{2} & =\frac{3 \pi^{3 / 2}\left\langle\mathcal{C}_{\mathrm{d}}\right\rangle}{2 m_{t} / \mathcal{R}_{\perp}^{2}\left(m_{t}\right) \mathcal{R}_{\|}\left(m_{t}\right)} . \\
\left\langle\mathcal{C}_{\mathrm{d}}\right\rangle & \approx \frac{1}{\left(1+\left(\frac{d}{2 \mathcal{R}_{\perp}(m)}\right)^{2}\right) \sqrt{1+\left(\frac{d}{2 \mathcal{R}_{\|}(m)}\right)^{2}}} .
\end{aligned}
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}}}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\| \|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

S. Mrowczynski, Acta Phys.Polon. B48 (2017) 707

Coalescence from correlation functions:

$$
\mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}}}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

S. Mrowczynski, Acta Phys.Polon. B48 (2017) 707

assumed: 1D GSM $\quad D(\mathbf{r})=\frac{e^{-\frac{r^{2}}{4 R_{\text {kin }}^{2}}}}{\left(4 \pi R_{\text {kin }}^{2}\right)^{3 / 2}} \quad \leadsto \quad C_{2}^{\text {PRF }}=e^{-R_{\text {kin }}^{2} q^{2}}$
obtained: $\quad \frac{d N_{d}}{d^{3} \mathbf{p}}=\mathcal{A} \frac{d N_{p}}{d^{3}\left(\frac{1}{2} \mathbf{p}\right)} \frac{d N_{n}}{d^{3}\left(\frac{1}{2} \mathbf{p}\right)}, \quad \mathcal{A}=\frac{3}{4} \frac{\pi^{3 / 2}}{\left(R_{\text {kin }}^{2}+R_{d}^{2}\right)^{3 / 2}}$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}}}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

S. Mrowczynski, Acta Phys.Polon. B48 (2017) 707

assumed: 1D GSM $D(\mathbf{r})=\frac{e^{-\frac{\mathbf{r}^{2}}{4 R_{\text {kin }}^{2}}}}{\left(4 \pi R_{\text {kin }}^{2}\right)^{3 / 2}}$
obtained: $\quad \frac{d N_{d}}{d^{3} \mathbf{p}}=\mathcal{A} \frac{d N_{p}}{d^{3}\left(\frac{1}{2} \mathbf{p}\right)} \frac{d N_{n}}{d^{3}\left(\frac{1}{2} \mathbf{p}\right)}, \quad \mathcal{A}=\frac{3}{4} \frac{\pi^{3 / 2}}{\left(R_{\text {kin }}^{2}+R_{d}^{2}\right)^{3 / 2}}=\gamma_{d} \frac{m}{2} B_{2}$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}}}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

S. Mrowczynski, Acta Phys.Polon. B48 (2017) 707

$$
\begin{aligned}
& \gamma_{d} \rightarrow 1 \\
& \text { assumed: 1D GSM } D(\mathbf{r})=\frac{e^{-\frac{\mathrm{r}^{2}}{4 R_{\mathrm{kin}}^{2}}}}{\left(4 \pi R_{\mathrm{kin}}^{2}\right)^{3 / 2}} \quad \leadsto C_{2}^{\mathrm{PRF}}=e^{-R_{\mathrm{ki}}^{2} \mid q^{2}} \\
& \text { obtained: } \quad \frac{d N_{d}}{d^{3} \mathbf{p}}=\mathcal{A} \frac{d N_{p}}{d^{3}\left(\frac{1}{2} \mathbf{p}\right)} \frac{d N_{n}}{d^{3}\left(\frac{1}{2} \mathbf{p}\right)}, \quad \mathcal{A}=\frac{3}{4} \frac{\pi^{3 / 2}}{\left(R_{\text {kin }}^{2}+R_{d}^{2}\right)^{3 / 2}}=\gamma_{d} \frac{m}{2} B_{2}
\end{aligned}
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

This formula is naive, of course.

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

$$
C_{2}(P, q)=1-\frac{G_{2}^{s}-G_{2}^{a}}{G_{2}^{s}+G_{2}^{a}} \mathcal{C}_{2}(P, q)
$$

This formula is naive, of course.

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

$$
C_{2}(P, q)=1-\frac{G_{2}^{s}-G_{2}^{a}}{G_{2}^{s}+G_{2}^{a}} \mathcal{C}_{2}(P, q)
$$

Final-state interactions (Coulomb and strong) distort the correlation function.
They distort it differently in pp state and in pn state, and they distort it differently in spin-symmetric/antisymmetric states.

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

$$
C_{2}(P, q)=1-\frac{G_{2}^{s}-G_{2}^{a}}{G_{2}^{s}+G_{2}^{a}} \mathcal{C}_{2}(P, q)
$$

We don't have any better idea, than to keep the experimental analysis that mods-out the final-state interactions to reconstruct underlying correlation.

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

Gaussian source; chaoticity λ

$$
\mathcal{C}_{2}^{\mathrm{PRF}}=\lambda e^{-R_{\perp}^{2} \vec{q}_{\perp}^{2}-R_{\|} \vec{q}_{l}^{2}}
$$

We don't have any better idea, than to keep the experimental analysis that mods-out the final-state interactions to reconstruct underlying correlation.

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

Gaussian source; chaoticity λ

$$
\mathcal{C}_{2}^{\mathrm{PRF}}=\lambda e^{-R_{\perp}^{2} \vec{q}_{\perp}^{2}-R_{\|} \vec{q}_{l}^{2}}
$$

$$
\mathcal{B}_{2}=\frac{3 \pi^{\frac{3}{2}} \lambda}{2 m\left(R_{\perp}^{2}+\left(\frac{d}{2}\right)^{2}\right) \sqrt{R_{\|}^{2}+\left(\frac{d}{2}\right)^{2}}}
$$

Coalescence from correlation functions:

$$
\mathcal{B}_{2}(p) \approx \frac{3}{2 m} \int d^{3} q \mathcal{D}(\vec{q}) \mathcal{C}_{2}^{\mathrm{PRF}}(\vec{p}, \vec{q})
$$

Gaussian source; chaoticity λ

$$
\mathcal{C}_{2}^{\mathrm{PRF}}=\lambda e^{-R_{\perp}^{2} \vec{q}_{\perp}^{2}-R_{\|} \vec{q}_{l}^{2}}
$$

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}}=\lambda^{\frac{A}{2}} \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left[\frac{(2 \pi)^{\frac{3}{2}}}{m^{3}\left(R_{\perp}^{2}+\left(\frac{d_{A}}{2}\right)^{2}\right) \sqrt{R_{\| \|}^{2}+\left(\frac{d_{A}}{2}\right)^{2}}}\right]^{A-1}
$$

Nuclear coalescence from correlation functions

KB, M. Takimoto, Phys.Rev. C99 (2019) no.4, 044913

Xtra

ALICE, PRC97, 024615 (2018)

CERN-EP-2017-255 September 26, 2017

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in pp collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV
[nucl-ex] 25 Sep 2017

ALICE, PRC97, 024615 (2018)

CERN-EP-2017-255 September 26, 2017

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in pp collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in $\mathbf{p p}$ collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV

ALICE Collaboration*

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in $\mathbf{p p}$ collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV

ALICE Collaboration*

$$
\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}
$$

ALICE, PRC97, 024615 (2018)

ALICE
CERN-EP-2017-25 September 26, 2017

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in pp collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV

ALICE Collaboration

Cosmic Ray antimatter - $\bar{p}, e^{+}, \overline{\mathrm{d}}$, and ${ }^{\overline{3} \mathrm{He}}$ - long thought a smoking gun of exotic high-energy physics like dark matter annihilation

Hillas, astro-ph/0607109

anti He3

Handful of events?

AMS reports (unpublished): 2 anti-He4 candidates, 6 anti-He3 candidates.
...cosmic rays, or background? Need to reject background at a level of $\sim 1: 100 \mathrm{M}$...

Take it as motivation for theory examination of astro flux.

AMS02, Dec 2016

anti He3

The difficult part is to get the cross section right.
Coalescence ansatz: $\quad E_{A} \frac{d N_{A}}{d^{3} p_{A}}=B_{A} R(x)\left(E_{p} \frac{d N_{p}}{d^{3} p_{p}}\right)^{A}$
We need B_{3}

For pp we had no B_{3}

For pp we had no B_{3}, but we did have $H B T$
$\frac{\mathcal{B}_{A}}{m^{2(A-1)}} \approx \frac{2 J_{A}+1}{2^{A} \sqrt{A}}\left(\frac{m R}{\sqrt{2 \pi}}\right)^{3(1-A)}$

Scheibl \& Heinz, PRC59, 1585 (1999)
KB et al, Phys.Rev. D96 (2017) no.10, 103021
KB \& Takimoto, 1901.07088

CERN-EP-2017-25 September 26, 2017

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in pp collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV

ALICE Collaboration

CERN-EP-2017-25 September 26, 2017

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in pp collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV

ALICE Collaboration

For pp we had no B3 until Sep 26, 2017
ALICE, PRC97, 024615 (2018)

Relevant for cosmic rays: low pt

Sern-EP-2017-201

Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei and their anti-nuclei in pp collisions at $\sqrt{s}=0.9,2.76$ and 7 TeV

ALICE Collaboration

For pp we had no B_{3} until Sep 26, 2017
ALICE, PRC97, 024615 (2018)

Relevant for cosmic rays: low pt

ALICE, PRC97, 024615 (2018)

Implications of ALICE results for astrophysics:

1 anti-He3 at AMSO2, in 5 -year exposure: plausible.

6 anti-He3 events: not plausible.

Implications of ALICE results for astrophysics:

1 anti-He3 at AMSO2, in 5-year exposure: plausible.

6 anti-He3 events: not plausible.
2 anti-He4?

ALICE, PRC97, 024615 (2018)

Implications of ALICE results for astrophysics:

1 anti-He3 at AMSO2, in 5 -year exposure: plausible.

6 anti-He3 events: not plausible.
2 anti-He4?
antimatter is produced in collisions of the bulk of the CRs

- protons and He - with interstellar gas.

Need to calculate this background to learn about possible exotic sources.

Problem: we don't know where CRs come from, nor how long they are trapped in the Galaxy, nor how they eventually escape.

This problem is often under-stated...

antimatter is produced in collisions of the bulk of the CRs - protons and He - with interstellar gas.

For stable, relativistic secondary CR nuclei, we have a handle: branching fractions

$$
\frac{n_{a}(\mathcal{R})}{n_{b}(\mathcal{R})} \approx \frac{Q_{a}(\mathcal{R})}{Q_{b}(\mathcal{R})}
$$

Apply this to antiprotons

$$
n_{\bar{p}}(\mathcal{R}) \approx \frac{n_{\mathrm{B}}(\mathcal{R})}{Q_{\mathrm{B}}(\mathcal{R})} Q_{\bar{p}}(\mathcal{R})
$$

