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We derive a simple formula relating the cross section for light cluster production (defined via a co-
alescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula
generalises earlier coalescence-correlation relations found by Scheibl & Heinz and by Mrowczynski for
Gaussian source models. It motivates joint experimental analyses of Hanbury Brown-Twiss (HBT) and
cluster yield measurements in existing and future data sets.

I. INTRODUCTION

The Large Hadron Collider (LHC) made available a di-
verse data set of production cross sections of light nu-
clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
For a cluster with mass number A and spin J
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, observed
at vanishing transverse momentum p
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= 0 in the collider
frame, it is summarised by the relation [20, 23]23:
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p is the Lorentz-

invariant di↵erential yield for constituent nucleons at p =

P
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/A. The homogeniety volume is parametrised by the
HBT radius R [5–12]4. m ⇡ 0.94 GeV is the nucleon mass.

Eq. (1) was predicted to apply in the limit that the size pa-
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of the cluster’s wave function can be neglected
compared to the source homogeniety radius: d
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⇤Electronic address: kfir.blum@cern.ch
1 Also known as Hanbury Brown-Twiss (HBT) [3, 4] analyses.
2 See also [16].
3 See, e.g. [24–26] for the appearance of a similar formula within a
thermodynamic model.

4 More practical details about the definition of R are given in Sec. IV.

A comparison of Eq. (1) to LHC data was presented in
Ref. [23], which used it to extrapolate measurements in Pb-
Pb collisions into a prediction of the coalescence factor of
D, 3He and 3H in p-p collisions. This extrapolation is non-
trivial. The HBT radius characterising Pb-Pb collisions is
R ⇠ 4 fm, compared to R ⇠ 1 fm measured in p-p colli-
sions. Thus, Eq. (1) predicts a large increase in B

A

going
from Pb-Pb to p-p: Bp�p

3 /BPb�Pb
3 ⇠ 4⇥ 10

3. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in B

A

. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at p

t

> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions
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particles produced in hadronic collisions. This model imple-
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Gaussian density profile, limited to radial symmetry in the
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to evaluate Cooper-Frye integrals [27], Ref. [17] compared
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In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
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integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions
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D, 3He and 3H in p-p collisions. This extrapolation is non-
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3. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in B
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. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
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> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
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I. INTRODUCTION

The Large Hadron Collider (LHC) made available a di-
verse data set of production cross sections of light nu-
clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
For a cluster with mass number A and spin J
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O(1) accuracy, over orders of magnitude in B
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. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at p

t

> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions
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clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
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A comparison of Eq. (1) to LHC data was presented in
Ref. [23], which used it to extrapolate measurements in Pb-
Pb collisions into a prediction of the coalescence factor of
D, 3He and 3H in p-p collisions. This extrapolation is non-
trivial. The HBT radius characterising Pb-Pb collisions is
R ⇠ 4 fm, compared to R ⇠ 1 fm measured in p-p colli-
sions. Thus, Eq. (1) predicts a large increase in B
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3. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in B

A

. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at p

t

> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions
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verse data set of production cross sections of light nu-
clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
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A comparison of Eq. (1) to LHC data was presented in
Ref. [23], which used it to extrapolate measurements in Pb-
Pb collisions into a prediction of the coalescence factor of
D, 3He and 3H in p-p collisions. This extrapolation is non-
trivial. The HBT radius characterising Pb-Pb collisions is
R ⇠ 4 fm, compared to R ⇠ 1 fm measured in p-p colli-
sions. Thus, Eq. (1) predicts a large increase in B
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3. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in B

A

. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at p

t

> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions
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tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
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The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
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Abstract. The “unreasonable e↵ectiveness” of relativistic fluid dynamics in describing high
energy heavy-ion and even proton-proton collisions will be demonstrated and discussed. Several
recent ideas of optimizing relativistic fluid dynamics for the specific challenges posed by such
collisions will be presented, and some thoughts will be o↵ered why the framework works
better than originally expected. I will also address the unresolved question where exactly
hydrodynamics breaks down, and why.

1. Prologue
In recent years high-energy nuclear collisions at RHIC and the LHC have revealed strong
indications for collective flow with hydrodynamic characteristics even in so-called “small”2

collision systems (p-p, p-Au, d-Au, 3He-Au, and p-Pb; see e.g. the reviews [1–3]). The question
in the subtitle above is one that I get frequently asked in this context. Let me start by explaining
that it is the wrong question to ask. To illustrate my point allow me to consider a world without
quarks where the strong interaction is described by an SU(3) gauge theory (“QCD”) which
contains only gluons in its color-deconfined “gluon plasma” state and only glueballs (G) in its
color-confined hadronic phase. In such a world a GG collision at LHC energies would create
a gluon plasma with similar initial energy (e), entropy (s) and (if it allows for a quasiparticle
description) total particle density (n) as the quark-gluon plasma created in a pp collision in our
world at the real LHC. The equation of state (EoS) p(e), speed of sound cs(e), and transport
coe�cients (such as the specific shear and bulk viscosities ⌘/s, ⇣/s) of this gluon plasma will
be very similar to those of the quark-gluon plasma in our world where these quantities are
all dominated by the interactions with and among gluons. So the dynamical evolution of the

1 This work was supported in part by the U.S. Department of Energy (DOE), O�ce of Science, O�ce for
Nuclear Physics, under Awards No. DE-SC0004286, DE-FG02-05ER41367, and through the Beam Energy Scan
Theory (BEST) Collaboration, as well as by the National Science Foundation (NSF) within the framework of the
JETSCAPE Collaboration under Award No. ACI-1550223. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562.
Travel support through a bilateral grant from FAPESP and The Ohio State University, as well as the hospitality
of the Centre for Theoretical and Mathematical Physics (CTMP) at the University of Cape Town, are gratefully
acknowledged.
2 More about those quotation marks later.
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We derive a simple formula relating the cross section for light cluster production (defined via a co-
alescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula
generalises earlier coalescence-correlation relations found by Scheibl & Heinz and by Mrowczynski for
Gaussian source models. It motivates joint experimental analyses of Hanbury Brown-Twiss (HBT) and
cluster yield measurements in existing and future data sets.

I. INTRODUCTION

The Large Hadron Collider (LHC) made available a di-
verse data set of production cross sections of light nu-
clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
For a cluster with mass number A and spin J

A

, observed
at vanishing transverse momentum p

t

= 0 in the collider
frame, it is summarised by the relation [20, 23]23:

B
A

m

2(A�1)
⇡ 2J

A

+ 1

2

A

p
A

✓
mRp
2⇡

◆3(1�A)

. (1)

Here, the coalescence factor is defined as B
A

=⇣
P

0
A

dNA
d

3
PA

⌘
/

⇣
p

0 dN

d

3
p

⌘
A

, where p

0
dN/d

3
p is the Lorentz-

invariant di↵erential yield for constituent nucleons at p =

P

A

/A. The homogeniety volume is parametrised by the
HBT radius R [5–12]4. m ⇡ 0.94 GeV is the nucleon mass.

Eq. (1) was predicted to apply in the limit that the size pa-
rameter d

A

of the cluster’s wave function can be neglected
compared to the source homogeniety radius: d

A

⌧ R. For
small systems with R . d

A

, Eq. (1) receives a correction
via R

2 ! R

2
+ (d

A

/2)

2. At finite p

t

, Ref. [17] suggested
that Eq. (1) should be modified by m ! m

t

=

p
m

2
+ p

2
t

.

⇤Electronic address: kfir.blum@cern.ch
1 Also known as Hanbury Brown-Twiss (HBT) [3, 4] analyses.
2 See also [16].
3 See, e.g. [24–26] for the appearance of a similar formula within a
thermodynamic model.

4 More practical details about the definition of R are given in Sec. IV.

A comparison of Eq. (1) to LHC data was presented in
Ref. [23], which used it to extrapolate measurements in Pb-
Pb collisions into a prediction of the coalescence factor of
D, 3He and 3H in p-p collisions. This extrapolation is non-
trivial. The HBT radius characterising Pb-Pb collisions is
R ⇠ 4 fm, compared to R ⇠ 1 fm measured in p-p colli-
sions. Thus, Eq. (1) predicts a large increase in B

A

going
from Pb-Pb to p-p: Bp�p

3 /BPb�Pb
3 ⇠ 4⇥ 10

3. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in B

A

. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at p

t

> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions



2

our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IVA). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IVB we generalise our
results to A � 2, postponing some details to App. B. In
Sec. IVC we compare our theoretical results to data. In
Sec. IVD we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ⇢̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
⇢̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in di↵erent guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m ! mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.

A. Deuteron formation

A D at lab-frame momentum P

d

is a two-particle
(neutron-proton) bound state | 

Pdi with wave function
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where
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and
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(~r)|2 = 1. The probability density of D in the
HXS is [13]

dN

d

d

3
P

d

= h 
Pd |⇢̂HX| Pdi (4)

= G

d

Z
d

3
x1

Z
d

3
x2

Z
d

3
x

0
1

Z
d

3
x

0
2

 

⇤
Pd
(x

0
1, x

0
2) Pd(x1, x2) ⇢2 (x

0
1, x

0
2;x1, x2; tf ) ,

where ⇢2 (x0
1, x

0
2;x1, x2; tf ) is the two-particle reduced HXS

density matrix. G

d

is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time t

f

and consider the HXS density
matrix as being specified at the moment t

f

. We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.
It is commonly assumed that the HXS density matrix can

be factorised into 1-particle density matrices,

⇢2 (x
0
1, x
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1, x1; t) ⇢1 (x
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that can in turn be described in terms of Wigner densities
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Inserting Eqs. (5) and (6) into Eq. (4) we obtain
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where D
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is the Wigner density of the D,
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In terms of the original variables of Eq. (4), ~R = (~x1+~x
0
1+

~x2 + ~x

0
2)/4 is the classical centre of mass coordinate of the
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two-nucleon system and ~r = (~x1 + ~x
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2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
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The di↵erential presentation reveals model-independence in
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
High excitation state (HXS)
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our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IVA). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IVB we generalise our
results to A � 2, postponing some details to App. B. In
Sec. IVC we compare our theoretical results to data. In
Sec. IVD we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ⇢̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
⇢̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in di↵erent guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m ! mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.
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is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time t
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and consider the HXS density
matrix as being specified at the moment t

f

. We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.
It is commonly assumed that the HXS density matrix can
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In terms of the original variables of Eq. (4), ~R = (~x1+~x
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2)/4 is the classical centre of mass coordinate of the
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
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i is an antisymmetric function of the particle co-
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have

d

d

3
R

✓
dN

d

d

3
P

d

◆
= G

d

f

W

1

 
~

P

d

2

,

~

R; t

f

!
⇥

Z
d

3
r |�

d

(~r)|2 fW

1

 
~

P

d

2

,

~

R� ~r; t

f

!
.

(17)

It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IVA). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IVB we generalise our
results to A � 2, postponing some details to App. B. In
Sec. IVC we compare our theoretical results to data. In
Sec. IVD we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ⇢̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
⇢̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in di↵erent guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m ! mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.
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is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time t

f

and consider the HXS density
matrix as being specified at the moment t

f

. We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.
It is commonly assumed that the HXS density matrix can
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In terms of the original variables of Eq. (4), ~R = (~x1+~x
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2)/4 is the classical centre of mass coordinate of the

2

our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IVA). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IVB we generalise our
results to A � 2, postponing some details to App. B. In
Sec. IVC we compare our theoretical results to data. In
Sec. IVD we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ⇢̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
⇢̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in di↵erent guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m ! mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.

A. Deuteron formation

A D at lab-frame momentum P

d

is a two-particle
(neutron-proton) bound state | 

Pdi with wave function

 

Pd(x1, x2) = e

i

~

Pd
~

X

�

d

(~r), (2)

where

~

X = (~x1 + ~x2)/2, ~r = ~x1 � ~x2 (3)

and
R
d

3
r|�

d

(~r)|2 = 1. The probability density of D in the
HXS is [13]

dN

d

d

3
P

d

= h 
Pd |⇢̂HX| Pdi (4)

= G

d

Z
d

3
x1

Z
d

3
x2

Z
d

3
x

0
1

Z
d

3
x

0
2

 

⇤
Pd
(x

0
1, x

0
2) Pd(x1, x2) ⇢2 (x

0
1, x

0
2;x1, x2; tf ) ,

where ⇢2 (x0
1, x

0
2;x1, x2; tf ) is the two-particle reduced HXS

density matrix. G

d

is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time t

f

and consider the HXS density
matrix as being specified at the moment t

f

. We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.
It is commonly assumed that the HXS density matrix can

be factorised into 1-particle density matrices,

⇢2 (x
0
1, x

0
2;x1, x2; t) = ⇢1 (x

0
1, x1; t) ⇢1 (x

0
2, x2; t) , (5)

that can in turn be described in terms of Wigner densities
f

W

1 ,

⇢1(x, x
0
; t) =

Z
d

3
k

(2⇡)

3
e

i

~

k

(

~x

0�~x

)

f

W

1

✓
~

k,

~x+ ~x

0

2

; t

◆
.(6)

Inserting Eqs. (5) and (6) into Eq. (4) we obtain

dN

d

d

3
P

d

= G

d

Z
d

3
R

Z
d

3
q

(2⇡)

3

Z
d

3
rD

d

(~q,~r) ⇥ (7)

f

W

1

 
~

P

d

2

+ ~q,

~

R+

~r

2

; t

f

!
f

W

1

 
~

P

d

2

� ~q,

~

R� ~r

2

; t

f

!
,

where D
d

is the Wigner density of the D,

D
d

(~q,~r) =

Z
d

3
⇣ e

�i~q

~

⇣

�

d

 
~r +

~

⇣

2

!
�

⇤
d

 
~r �

~

⇣

2

!
.(8)

In terms of the original variables of Eq. (4), ~R = (~x1+~x
0
1+

~x2 + ~x

0
2)/4 is the classical centre of mass coordinate of the

2

our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IVA). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IVB we generalise our
results to A � 2, postponing some details to App. B. In
Sec. IVC we compare our theoretical results to data. In
Sec. IVD we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ⇢̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
⇢̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in di↵erent guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m ! mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.

A. Deuteron formation

A D at lab-frame momentum P

d

is a two-particle
(neutron-proton) bound state | 

Pdi with wave function

 

Pd(x1, x2) = e

i

~

Pd
~

X

�

d

(~r), (2)

where

~

X = (~x1 + ~x2)/2, ~r = ~x1 � ~x2 (3)

and
R
d

3
r|�

d

(~r)|2 = 1. The probability density of D in the
HXS is [13]

dN

d

d

3
P

d

= h 
Pd |⇢̂HX| Pdi (4)

= G

d

Z
d

3
x1

Z
d

3
x2

Z
d

3
x

0
1

Z
d

3
x

0
2

 

⇤
Pd
(x

0
1, x

0
2) Pd(x1, x2) ⇢2 (x

0
1, x

0
2;x1, x2; tf ) ,

where ⇢2 (x0
1, x

0
2;x1, x2; tf ) is the two-particle reduced HXS

density matrix. G

d

is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time t

f

and consider the HXS density
matrix as being specified at the moment t

f

. We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.
It is commonly assumed that the HXS density matrix can

be factorised into 1-particle density matrices,

⇢2 (x
0
1, x

0
2;x1, x2; t) = ⇢1 (x

0
1, x1; t) ⇢1 (x

0
2, x2; t) , (5)

that can in turn be described in terms of Wigner densities
f

W

1 ,

⇢1(x, x
0
; t) =

Z
d

3
k

(2⇡)

3
e

i

~

k

(

~x

0�~x

)

f

W

1

✓
~

k,

~x+ ~x

0

2

; t

◆
.(6)

Inserting Eqs. (5) and (6) into Eq. (4) we obtain

dN

d

d

3
P

d

= G

d

Z
d

3
R

Z
d

3
q

(2⇡)

3

Z
d

3
rD

d

(~q,~r) ⇥ (7)

f

W

1

 
~

P

d

2

+ ~q,

~

R+

~r

2

; t

f

!
f

W

1

 
~

P

d

2

� ~q,

~

R� ~r

2

; t

f

!
,

where D
d

is the Wigner density of the D,

D
d

(~q,~r) =

Z
d

3
⇣ e

�i~q

~

⇣

�

d

 
~r +

~

⇣

2

!
�

⇤
d

 
~r �

~

⇣

2

!
.(8)

In terms of the original variables of Eq. (4), ~R = (~x1+~x
0
1+

~x2 + ~x

0
2)/4 is the classical centre of mass coordinate of the

2

our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IVA). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IVB we generalise our
results to A � 2, postponing some details to App. B. In
Sec. IVC we compare our theoretical results to data. In
Sec. IVD we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ⇢̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
⇢̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in di↵erent guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m ! mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.

A. Deuteron formation

A D at lab-frame momentum P

d

is a two-particle
(neutron-proton) bound state | 

Pdi with wave function

 

Pd(x1, x2) = e

i

~

Pd
~

X

�

d

(~r), (2)

where

~

X = (~x1 + ~x2)/2, ~r = ~x1 � ~x2 (3)

and
R
d

3
r|�

d

(~r)|2 = 1. The probability density of D in the
HXS is [13]

dN

d

d

3
P

d

= h 
Pd |⇢̂HX| Pdi (4)

= G

d

Z
d

3
x1

Z
d

3
x2

Z
d

3
x

0
1

Z
d

3
x

0
2

 

⇤
Pd
(x

0
1, x

0
2) Pd(x1, x2) ⇢2 (x

0
1, x

0
2;x1, x2; tf ) ,

where ⇢2 (x0
1, x

0
2;x1, x2; tf ) is the two-particle reduced HXS

density matrix. G

d

is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time t

f

and consider the HXS density
matrix as being specified at the moment t

f

. We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.
It is commonly assumed that the HXS density matrix can

be factorised into 1-particle density matrices,

⇢2 (x
0
1, x

0
2;x1, x2; t) = ⇢1 (x

0
1, x1; t) ⇢1 (x

0
2, x2; t) , (5)

that can in turn be described in terms of Wigner densities
f

W

1 ,

⇢1(x, x
0
; t) =

Z
d

3
k

(2⇡)

3
e

i

~

k

(

~x

0�~x

)

f

W

1

✓
~

k,

~x+ ~x

0

2

; t

◆
.(6)

Inserting Eqs. (5) and (6) into Eq. (4) we obtain
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d
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. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
�

d

dN

d

/d

3
P

d

and �1�2 dNs,a

/d

3
p1d

3
p2. Subtleties arise in

the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t

f

= t

f

(

~

R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation

d

d

3
R

✓
dN

d

d

3
P

d

◆
⇡ G

d

d

d

3
R

Z
d

3
qD(~q)F2

 
~

P

d

2

, ~q

!
.

(16)

The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was

2

our formalism reproduces Eq. (1) as found in [17]5. The up
shot is that our work makes Eq. (1) a generic prediction.
If, above, we argued that the model dependence in [17]
makes it a surprise that Eq. (1) successfully describes sys-
tems from Pb-Pb to p-p, then in light of the discussion in
Sec. II it becomes nontrivial to imagine a system for which
Eq. (1) would fail. The down side is that Eq. (1) is es-
sentially a kinematical relation and can teach us relatively
little about the dynamics of the state produced in heavy-ion
collisions. Our analysis bears a connection to (being a less
sophisticated version of) Ref. [18], which showed that the
number of pion pairs produced in Coulomb bound states
is related to the number of free pion pairs at small rela-
tive momentum. Our work is also close in spirit to work by
Mrowczynski [14, 29–33].

In Sec. IV we consider complications including final-state
interactions and source chaoticity (Sec. IVA). We do not
address these complications in detail, but show how exper-
imental analyses that take these issues into account can be
used to test the coalescence-correlation relation at the cost
of some model-dependence. In Sec. IVB we generalise our
results to A � 2, postponing some details to App. B. In
Sec. IVC we compare our theoretical results to data. In
Sec. IVD we recap the results of Ref. [23], comparing the
coalescence-correlation relation with data across systems.
While our results are consistent with available measure-
ments, the uncertainties are large. Existing experimental
analyses were not geared for a direct comparison of fem-
toscopy and cluster yields. This lack motivates dedicated
experimental work.

We conclude in Sec. V.

II. QM CONSIDERATIONS

Hadronic collisions produce a high-excitation state
(HXS), characterised by a density matrix ⇢̂HX. QM allows
to calculate the probability density to find a certain non-
relativistic state in the HXS by projecting that state onto
⇢̂HX. In this section we use the QM formalism to derive
a relation between D and two-particle spectra. We then
convert to Lorentz-invariant quantities.

We emphasise that the QM formulation we use is far
from new. It had been utilised in di↵erent guises in many
early studies including (as a partial list) Refs. [13, 14, 16,
17, 19, 28, 32–35]. Our discussion in Secs. II A and II B is
merely intended to review the derivation of D and particle
pair formation, respectively, in the HXS, recalling that the
two phenomenae stem from building blocks that are closely
related on general grounds. Our next step, in Sec. II C, is to
explicitly combine the expressions into a direct relation be-

5 Apart from the fact that the natural definition we find for R is in
the so-called pair rest frame, compared to the longitudinal frame
adopted in [17], and apart from the replacement m ! mt. Please
see Sec. III for details.

tween coalescence and pair spectra, summarised in Eq. (24).
This result, as far as we know, is new to the current work.

A. Deuteron formation
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density matrix. G
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is a dimensionless normalisation factor.
In this section, for simplicity, we assume the existence of a
well-defined freeze-out time t

f

and consider the HXS density
matrix as being specified at the moment t

f

. We emphasise
that this simplification is not essential for the derivation,
and our main result [Eq. (24) below] holds also if we allow a
finite-duration freeze-out window. An alternative derivation
that makes this point manifest is given in App. A.
It is commonly assumed that the HXS density matrix can
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Inserting Eqs. (5) and (6) into Eq. (4) we obtain
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In terms of the original variables of Eq. (4), ~R = (~x1+~x
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1+
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2)/4 is the classical centre of mass coordinate of the
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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ference are defined as
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dN

s

d

3
p1d

3
p2

= h s

p1,p2
|⇢̂HX| s

p1,p2
i (13)

= G

s

2

Z
d

3
x1

Z
d

3
x2

Z
d

3
x

0
1

Z
d

3
x

0
2

 

s⇤
p1,p2

(x

0
1, x

0
2) 

s

p1,p2
(x1, x2) ⇢2 (x

0
1, x

0
2;x1, x2; tf ) .

Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the spatial integrations nontrivial [27]. In addition, instead
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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two-nucleon system and ~r = (~x1 + ~x
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0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as
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P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G

s

2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-out

surface t
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(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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0
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0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f

W

1

functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which givesR
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as
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P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-out

surface t
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
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0
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and proton-neutron reduced density matrix, appearing in
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-out

surface t
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(
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R). We now consider these issues.
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was

3

two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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ference are defined as
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
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2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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2 (A2 (p1, p2) + F2 (P, q)) , (15)

with G
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t
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(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f
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. This was
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which givesR
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-
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ference are defined as

~
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The probability density associated with | s
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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2 (A2 (p1, p2) + F2 (P, q)) , (15)

with G

a

2 = G

s

2/3.

C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t

f

= t

f

(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
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0
2;x1, x2; tf ) for the proton-proton
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Eqs. (13) and (4). G
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-out

surface t
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Inspecting Eqs. (10) and (14), we can write a di↵erential
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f
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. This was
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two-nucleon system and ~r = (~x1 + ~x

0
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0
2)/2 is

the classical relative coordinate between the nucleons.
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
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2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G

s

2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t
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(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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ference are defined as
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The probability density associated with | s
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i can be cal-
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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2 (A2 (p1, p2) + F2 (P, q)) , (15)

with G
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t
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= t
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(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which givesR
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-
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where the average pair momentum and the momentum dif-
ference are defined as
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P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G

s

2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t

f

= t

f

(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which givesR
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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ference are defined as
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-out

surface t
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Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation

d

d

3
R

✓
dN

d

d

3
P

d

◆
⇡ G

d

d

d

3
R

Z
d

3
qD(~q)F2

 
~

P

d

2

, ~q

!
.

(16)

The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f
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. This was
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
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ordinates,
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ference are defined as
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The probability density associated with | s
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i can be cal-
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
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0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G

s

2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as
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P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-out

surface t
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(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f
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. This was
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2)/2 is

the classical relative coordinate between the nucleons.
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which givesR
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as
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P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t

f

= t

f

(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation

d

d

3
R

✓
dN

d

d

3
P

d

◆
⇡ G

d

d

d

3
R

Z
d

3
qD(~q)F2

 
~

P

d

2

, ~q

!
.

(16)

The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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ference are defined as
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
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0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t
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we expect a freeze-out

surface t
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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the classical relative coordinate between the nucleons.
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as

~

P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G

s

2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t

f

= t

f

(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was

γd ∫ d3R fd → (1/2m)∫ [d3σμPμ
d ] fd

relativistic flow:
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f

W

1

functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as

~

P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G

s

2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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2 (A2 (p1, p2) + F2 (P, q)) , (15)

with G
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t

f

= t

f

(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was

γd ∫ d3R fd → (1/2m)∫ [d3σμPμ
d ] fd

relativistic flow:
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two-nucleon system and ~r = (~x1 + ~x

0
1)/2 � (~x2 + ~x

0
2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f

W
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which givesR
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as

~

P = (~p1 + ~p2) /2, ~q = ~p1 � ~p2. (12)

The probability density associated with | s

p1,p2
i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G

s

2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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with G
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t

f

= t

f

(
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R). We now consider these issues.
Inspecting Eqs. (10) and (14), we can write a di↵erential

coalescence-correlation relation
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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0
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2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
approximation we can perform the q integration which givesR
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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where the average pair momentum and the momentum dif-
ference are defined as
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The probability density associated with | s
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i can be cal-

culated as [34, 35]
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-

ing Eqs. (5) and (6) into Eq. (13) we obtain
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a

p1,p2
i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
of a homogeneous freeze-out time t

f

we expect a freeze-out

surface t
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Inspecting Eqs. (10) and (14), we can write a di↵erential
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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the classical relative coordinate between the nucleons.
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functions in Eq. (7) is a reasonable approximation, valid
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
of | s

p1,p2
i is an antisymmetric function of the particle co-

ordinates,
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Assuming unpolarised isospin-invariant HXS, we use
the same ⇢2 (x

0
1, x

0
2;x1, x2; tf ) for the proton-proton

and proton-neutron reduced density matrix, appearing in
Eqs. (13) and (4). G
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2 is a normalisation constant. Insert-
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-

symmetric state | a
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i, for which the wave function is an

symmetric function of the particle coordinates. We find
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C. Coalescence from two-particle correlations

Eqs. (10) and (14-15) give the number of D’s and pro-
ton pairs, respectively, per di↵erential momentum element
when all momenta involved are small. The Lorentz-invariant
version of the quantities on the LHS of these equations are
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the computation of the RHS because for a relativistically ex-
panding HXS, di↵erent parts of the particle emission region
are moving relativistically w.r.t. other parts. This makes
the spatial integrations nontrivial [27]. In addition, instead
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was

4

done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �
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µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as
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By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have
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where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
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Assuming unpolarised isospin-symmetric HXS [36] we have
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Using these conventions and noting that �1 ⇡ �2 ⇡ �
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small |~q| ⌧ m, we are finally led to the result:
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Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =
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2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by
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is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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two-nucleon system and ~r = (~x1 + ~x
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2)/2 is

the classical relative coordinate between the nucleons.
It can be shown that neglecting ±~q inside of the f
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functions in Eq. (7) is a reasonable approximation, valid
to ⇠ 10% accuracy for Pb-Pb collisions [17]. With this
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d
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. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s

p1,p2
i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
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functions in Eq. (7) is a reasonable approximation, valid
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Eq. (10) expresses a non-relativistic QM calculation of
the Lorentz non-invariant quantity dN/d

3
P

d

. In Sec. II C
we return to the problem of connecting this result to the
total Lorentz-invariant D yield obtained by integrating over
di↵erent emission regions in an expanding HXS “fireball”.

B. Nucleon pair emission

Consider a state | s
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i describing two free propagating

protons in a spin-symmetric configuration. Ignoring final-
state interactions (FSI), the position space representation
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i is an antisymmetric function of the particle co-
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Assuming unpolarised isospin-invariant HXS, we use
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We could express A2 in Eq. (14) in terms of P, q, but we
keep p1, p2 for clarity. The P, q notation is useful for the
F2 term, which expresses the QM correlation.
We can repeat the same steps above for the spin anti-
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i, for which the wave function is an
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C. Coalescence from two-particle correlations
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The di↵erential presentation reveals model-independence in
terms of the details of freeze-out. By either plugging-in
Eq. (9), or proceeding directly from Eq. (10), we have
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It is natural to regard the RHS of Eq. (17) as a
Lorentz-invariant distribution function f

d

. This was
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done in Ref. [17], which used the Cooper-Frye pre-
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perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as
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By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have
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where the superscript PRF instructs us that q in CPRF
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defined in the pair centre of mass frame. In the same limit,
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Assuming unpolarised isospin-symmetric HXS [36] we have

G

d

G

s

2 +G

a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �
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small |~q| ⌧ m, we are finally led to the result:
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Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by
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, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
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By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
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Using these conventions and noting that �1 ⇡ �2 ⇡ �
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small |~q| ⌧ m, we are finally led to the result:
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Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P
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2. Thus, there will
actually be no on-shell proton pairs that satisfy p
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2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q
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2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~
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d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by
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is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
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The numerator on the RHS of Eq. (19) sums together the
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LHS and the RHS, but we do not enforce p0 on the RHS to
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0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.
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Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
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The numerator on the RHS of Eq. (19) sums together the
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2. Thus, there will
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2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =
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/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by
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where ~q
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is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
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6 See also [16, 37].
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The numerator on the RHS of Eq. (19) sums together the
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We derive a simple formula relating the cross section for light cluster production (defined via a co-
alescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula
generalises earlier coalescence-correlation relations found by Scheibl & Heinz and by Mrowczynski for
Gaussian source models. It motivates joint experimental analyses of Hanbury Brown-Twiss (HBT) and
cluster yield measurements in existing and future data sets.

I. INTRODUCTION

The Large Hadron Collider (LHC) made available a di-
verse data set of production cross sections of light nu-
clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
For a cluster with mass number A and spin J

A

, observed
at vanishing transverse momentum p

t

= 0 in the collider
frame, it is summarised by the relation [20, 23]23:

B
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2(A�1)
⇡ 2J
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p
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✓
mRp
2⇡

◆3(1�A)

. (1)

Here, the coalescence factor is defined as B
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⌘
/
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3
p

⌘
A

, where p

0
dN/d

3
p is the Lorentz-

invariant di↵erential yield for constituent nucleons at p =

P

A

/A. The homogeniety volume is parametrised by the
HBT radius R [5–12]4. m ⇡ 0.94 GeV is the nucleon mass.

Eq. (1) was predicted to apply in the limit that the size pa-
rameter d

A

of the cluster’s wave function can be neglected
compared to the source homogeniety radius: d

A

⌧ R. For
small systems with R . d

A

, Eq. (1) receives a correction
via R

2 ! R

2
+ (d

A

/2)

2. At finite p

t

, Ref. [17] suggested
that Eq. (1) should be modified by m ! m

t

=

p
m

2
+ p

2
t

.

⇤Electronic address: kfir.blum@cern.ch
1 Also known as Hanbury Brown-Twiss (HBT) [3, 4] analyses.
2 See also [16].
3 See, e.g. [24–26] for the appearance of a similar formula within a
thermodynamic model.

4 More practical details about the definition of R are given in Sec. IV.

A comparison of Eq. (1) to LHC data was presented in
Ref. [23], which used it to extrapolate measurements in Pb-
Pb collisions into a prediction of the coalescence factor of
D, 3He and 3H in p-p collisions. This extrapolation is non-
trivial. The HBT radius characterising Pb-Pb collisions is
R ⇠ 4 fm, compared to R ⇠ 1 fm measured in p-p colli-
sions. Thus, Eq. (1) predicts a large increase in B

A

going
from Pb-Pb to p-p: Bp�p

3 /BPb�Pb
3 ⇠ 4⇥ 10

3. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in B

A

. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at p

t

> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions
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perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor
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with p = P
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/2 and where p
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is the unpolarised proton
yield. The two-particle correlation function is constructed
as
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G
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C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that
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Assuming unpolarised isospin-symmetric HXS [36] we have

G

d

G

s

2 +G

a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:
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2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p
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2. Thus, there will
actually be no on-shell proton pairs that satisfy p
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2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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with d = 3.2 fm. This leads to
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by
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2 = e
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l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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Coalescence from correlation functions:

assumed: hydro model

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
with respect to the beam axis (“longitudinal” or z axis),
and the transverse coordinates are conveniently chosen
as ρ =

√

x2 + y2 and the azimuthal angle φ. Ultrarel-
ativistic kinematics in the beam direction suggests the
longitudinal proper time τ =

√
t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
longitudinal and temporal coordinates:

Rµ =
(

τ ch η, ρ cosφ, ρ sinφ, τ sh η
)

. (2.4)

The particle momenta are parametrized by their rapid-
ity Y = arth (Pz/E) along the beam direction and their
transverse mass Mt =

√

M2 + P 2
t :

Pµ =
(

Mt chY, Pt cosΦ, Pt sinΦ, Mt shY
)

. (2.5)

The flow 4-velocity is conveniently parametrized in terms
of longitudinal and transverse flow rapidities ηl and ηt,
respectively:

uµ(R) =
(

ch ηl ch ηt, sh ηt cosφ, sh ηt sinφ, sh ηl ch ηt
)

,

(2.6)

where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:

ηl(τ, η, ρ) = η, ηt(τ, η, ρ) = ηf

(

ρ

∆ρ

)α

. (2.7)

Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form

fi(R,P ) = eµi/T e−P ·u(R)/T H(R), i = p, n (2.8a)

H(R) = H(η, ρ) = exp

(

−
ρ2

2(∆ρ)2
−

η2

2(∆η)2

)

. (2.8b)

The density profile is normalized to a total covariant
freeze-out volume Vcov:

Vcov =

∫

d4R H̄(R) = (2π)
3
2 (∆ρ)2 (∆η) τ0 , (2.9)

where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral

∫

d4RSi(R,P ) over an emission
function

Si(R,P ) =
2Ji + 1

(2π)3
Mt ch (η − Y ) e(µi−P ·u(R))/T

× H̃(η, ρ) J(τ) . (2.10)

[H̃(η, ρ) =
√

(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =

√

2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-

out hypersurface around τ0; the choice in [9] is

J(τ) =
1

∆τ
√
2π

exp

(

(τ − τ0)2

2(∆τ)2

)

. (2.11)

General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.

C. Cluster spectra from the model source

Inserting the expressions from Sec. II A into Eq. (2.3)
one is led to the following integral:

4

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
with respect to the beam axis (“longitudinal” or z axis),
and the transverse coordinates are conveniently chosen
as ρ =
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x2 + y2 and the azimuthal angle φ. Ultrarel-
ativistic kinematics in the beam direction suggests the
longitudinal proper time τ =
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t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
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The flow 4-velocity is conveniently parametrized in terms
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where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:
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Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form
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The density profile is normalized to a total covariant
freeze-out volume Vcov:

Vcov =
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d4R H̄(R) = (2π)
3
2 (∆ρ)2 (∆η) τ0 , (2.9)

where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral

∫

d4RSi(R,P ) over an emission
function

Si(R,P ) =
2Ji + 1
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(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =
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2/πVcov), and of
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is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-

out hypersurface around τ0; the choice in [9] is

J(τ) =
1

∆τ
√
2π

exp

(

(τ − τ0)2

2(∆τ)2

)

. (2.11)

General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.
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one is led to the following integral:

4

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
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as ρ =

√

x2 + y2 and the azimuthal angle φ. Ultrarel-
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where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:

ηl(τ, η, ρ) = η, ηt(τ, η, ρ) = ηf
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Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form
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The density profile is normalized to a total covariant
freeze-out volume Vcov:

Vcov =
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d4R H̄(R) = (2π)
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2 (∆ρ)2 (∆η) τ0 , (2.9)

where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral

∫
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function
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(2π)3
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(2/π)H(η, ρ) differs from (2.8) only by
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for us because it absorbs some constant terms in the clus-
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= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
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done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �
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µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor
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⌘2 , (18)

with p = P

d

/2 and where p
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p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as

C2(P, q) =

p
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G

s

2 �G

a

2

G

s

2 +G

a

2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =

G

d

G

s

2 +G

a

2

2m

m

2A2

Z
d

3
qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have

G

d

G

s

2 +G

a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3
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Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e
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2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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Coalescence from correlation functions:

assumed: hydro model

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
with respect to the beam axis (“longitudinal” or z axis),
and the transverse coordinates are conveniently chosen
as ρ =
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x2 + y2 and the azimuthal angle φ. Ultrarel-
ativistic kinematics in the beam direction suggests the
longitudinal proper time τ =

√
t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
longitudinal and temporal coordinates:

Rµ =
(

τ ch η, ρ cosφ, ρ sinφ, τ sh η
)

. (2.4)

The particle momenta are parametrized by their rapid-
ity Y = arth (Pz/E) along the beam direction and their
transverse mass Mt =
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t :
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The flow 4-velocity is conveniently parametrized in terms
of longitudinal and transverse flow rapidities ηl and ηt,
respectively:

uµ(R) =
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ch ηl ch ηt, sh ηt cosφ, sh ηt sinφ, sh ηl ch ηt
)

,
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where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:

ηl(τ, η, ρ) = η, ηt(τ, η, ρ) = ηf

(
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Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form
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The density profile is normalized to a total covariant
freeze-out volume Vcov:

Vcov =

∫

d4R H̄(R) = (2π)
3
2 (∆ρ)2 (∆η) τ0 , (2.9)

where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral

∫

d4RSi(R,P ) over an emission
function

Si(R,P ) =
2Ji + 1

(2π)3
Mt ch (η − Y ) e(µi−P ·u(R))/T

× H̃(η, ρ) J(τ) . (2.10)

[H̃(η, ρ) =
√

(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =

√

2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-

out hypersurface around τ0; the choice in [9] is

J(τ) =
1

∆τ
√
2π

exp

(

(τ − τ0)2

2(∆τ)2

)

. (2.11)

General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.

C. Cluster spectra from the model source

Inserting the expressions from Sec. II A into Eq. (2.3)
one is led to the following integral:

4

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
with respect to the beam axis (“longitudinal” or z axis),
and the transverse coordinates are conveniently chosen
as ρ =

√

x2 + y2 and the azimuthal angle φ. Ultrarel-
ativistic kinematics in the beam direction suggests the
longitudinal proper time τ =

√
t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
longitudinal and temporal coordinates:

Rµ =
(

τ ch η, ρ cosφ, ρ sinφ, τ sh η
)

. (2.4)

The particle momenta are parametrized by their rapid-
ity Y = arth (Pz/E) along the beam direction and their
transverse mass Mt =

√

M2 + P 2
t :

Pµ =
(

Mt chY, Pt cosΦ, Pt sinΦ, Mt shY
)

. (2.5)

The flow 4-velocity is conveniently parametrized in terms
of longitudinal and transverse flow rapidities ηl and ηt,
respectively:

uµ(R) =
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ch ηl ch ηt, sh ηt cosφ, sh ηt sinφ, sh ηl ch ηt
)

,

(2.6)

where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:
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∆ρ

)α

. (2.7)

Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
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file H(R) we take Gaussians with widths ∆η and ∆ρ,
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(2.3) take the form
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[H̃(η, ρ) =
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(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =
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2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
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J(τ) =
1

∆τ
√
2π

exp

(

(τ − τ0)2

2(∆τ)2

)

. (2.11)

General conditions for J(τ) are
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= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
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generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
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tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
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of the total fireball volume (Ṽcov =
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General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.

C. Cluster spectra from the model source

Inserting the expressions from Sec. II A into Eq. (2.3)
one is led to the following integral:
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a dozen particles can be described by fluid dynamics?”

Ulrich Heinz1a, in collaboration with J. Scott Morelandb

aDepartment of Physics, The Ohio State University, Columbus, OH 43210-1117, USA
bDepartment of Physics, Duke University, Durham, NC 27708-0305, USA

E-mail: heinz.9@osu.edu

Abstract. The “unreasonable e↵ectiveness” of relativistic fluid dynamics in describing high
energy heavy-ion and even proton-proton collisions will be demonstrated and discussed. Several
recent ideas of optimizing relativistic fluid dynamics for the specific challenges posed by such
collisions will be presented, and some thoughts will be o↵ered why the framework works
better than originally expected. I will also address the unresolved question where exactly
hydrodynamics breaks down, and why.

1. Prologue
In recent years high-energy nuclear collisions at RHIC and the LHC have revealed strong
indications for collective flow with hydrodynamic characteristics even in so-called “small”2

collision systems (p-p, p-Au, d-Au, 3He-Au, and p-Pb; see e.g. the reviews [1–3]). The question
in the subtitle above is one that I get frequently asked in this context. Let me start by explaining
that it is the wrong question to ask. To illustrate my point allow me to consider a world without
quarks where the strong interaction is described by an SU(3) gauge theory (“QCD”) which
contains only gluons in its color-deconfined “gluon plasma” state and only glueballs (G) in its
color-confined hadronic phase. In such a world a GG collision at LHC energies would create
a gluon plasma with similar initial energy (e), entropy (s) and (if it allows for a quasiparticle
description) total particle density (n) as the quark-gluon plasma created in a pp collision in our
world at the real LHC. The equation of state (EoS) p(e), speed of sound cs(e), and transport
coe�cients (such as the specific shear and bulk viscosities ⌘/s, ⇣/s) of this gluon plasma will
be very similar to those of the quark-gluon plasma in our world where these quantities are
all dominated by the interactions with and among gluons. So the dynamical evolution of the
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Nuclear Physics, under Awards No. DE-SC0004286, DE-FG02-05ER41367, and through the Beam Energy Scan
Theory (BEST) Collaboration, as well as by the National Science Foundation (NSF) within the framework of the
JETSCAPE Collaboration under Award No. ACI-1550223. This work used the Extreme Science and Engineering
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2 More about those quotation marks later.
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done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �

d

R
d

3
Rf

d

!
(1/2m)

R ⇥
d

3
�

µ

P

µ

d

⇤
f

d

, where d

3
�

µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =

P

0
d

dNd
d

3
Pd⇣

p

0 dN

d

3
p

⌘2 , (18)

with p = P

d

/2 and where p

0 dN

d

3
p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as

C2(P, q) =

p

0
1 p

0
2

dN

d

3
p1d

3
p2⇣

p

0
1

dN

d

3
p1

⌘⇣
p

0
2

dN

d

3
p2

⌘
. (19)

The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G

s

2 �G

a

2

G

s

2 +G

a

2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =

G

d

G

s

2 +G

a

2

2m

m

2A2

Z
d

3
qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have

G

d

G

s

2 +G

a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3

2m

Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

�

d

(~r) =

e

� ~r2

2d2

(⇡d

2
)

3
4

(25)

with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6

B2 =

3⇡

3
2

2m

⇣
R

2
? +

�
d

2

�2⌘q
R

2
|| +

�
d

2

�2 , (GSM).

(28)

6 See also [16, 37].
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Coalescence from correlation functions:

assumed: hydro model

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
with respect to the beam axis (“longitudinal” or z axis),
and the transverse coordinates are conveniently chosen
as ρ =

√

x2 + y2 and the azimuthal angle φ. Ultrarel-
ativistic kinematics in the beam direction suggests the
longitudinal proper time τ =

√
t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
longitudinal and temporal coordinates:

Rµ =
(

τ ch η, ρ cosφ, ρ sinφ, τ sh η
)

. (2.4)

The particle momenta are parametrized by their rapid-
ity Y = arth (Pz/E) along the beam direction and their
transverse mass Mt =

√

M2 + P 2
t :

Pµ =
(

Mt chY, Pt cosΦ, Pt sinΦ, Mt shY
)

. (2.5)

The flow 4-velocity is conveniently parametrized in terms
of longitudinal and transverse flow rapidities ηl and ηt,
respectively:

uµ(R) =
(

ch ηl ch ηt, sh ηt cosφ, sh ηt sinφ, sh ηl ch ηt
)

,

(2.6)

where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:

ηl(τ, η, ρ) = η, ηt(τ, η, ρ) = ηf

(

ρ

∆ρ

)α

. (2.7)

Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form

fi(R,P ) = eµi/T e−P ·u(R)/T H(R), i = p, n (2.8a)

H(R) = H(η, ρ) = exp

(

−
ρ2

2(∆ρ)2
−

η2

2(∆η)2

)

. (2.8b)

The density profile is normalized to a total covariant
freeze-out volume Vcov:

Vcov =

∫

d4R H̄(R) = (2π)
3
2 (∆ρ)2 (∆η) τ0 , (2.9)

where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral

∫

d4RSi(R,P ) over an emission
function

Si(R,P ) =
2Ji + 1

(2π)3
Mt ch (η − Y ) e(µi−P ·u(R))/T

× H̃(η, ρ) J(τ) . (2.10)

[H̃(η, ρ) =
√

(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =

√

2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-

out hypersurface around τ0; the choice in [9] is

J(τ) =
1

∆τ
√
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exp
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. (2.11)

General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.

C. Cluster spectra from the model source

Inserting the expressions from Sec. II A into Eq. (2.3)
one is led to the following integral:
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We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
with respect to the beam axis (“longitudinal” or z axis),
and the transverse coordinates are conveniently chosen
as ρ =

√

x2 + y2 and the azimuthal angle φ. Ultrarel-
ativistic kinematics in the beam direction suggests the
longitudinal proper time τ =

√
t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
longitudinal and temporal coordinates:

Rµ =
(

τ ch η, ρ cosφ, ρ sinφ, τ sh η
)

. (2.4)

The particle momenta are parametrized by their rapid-
ity Y = arth (Pz/E) along the beam direction and their
transverse mass Mt =

√

M2 + P 2
t :

Pµ =
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Mt chY, Pt cosΦ, Pt sinΦ, Mt shY
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The flow 4-velocity is conveniently parametrized in terms
of longitudinal and transverse flow rapidities ηl and ηt,
respectively:

uµ(R) =
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where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:
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Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form
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The density profile is normalized to a total covariant
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where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral
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d4RSi(R,P ) over an emission
function

Si(R,P ) =
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× H̃(η, ρ) J(τ) . (2.10)

[H̃(η, ρ) =
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(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =
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2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-
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General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.
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(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
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tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
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√

2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-

out hypersurface around τ0; the choice in [9] is

J(τ) =
1

∆τ
√
2π

exp

(

(τ − τ0)2

2(∆τ)2

)

. (2.11)

General conditions for J(τ) are
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= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.
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While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t
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Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as
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By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have
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where the superscript PRF instructs us that q in CPRF
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defined in the pair centre of mass frame. In the same limit,
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small |~q| ⌧ m, we are finally led to the result:
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Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined
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derivation of Eq. (24). We can find on-shell proton pairs to
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2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
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/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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with d = 3.2 fm. This leads to
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by
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where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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Coalescence from correlation functions:

assumed: hydro model

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
with respect to the beam axis (“longitudinal” or z axis),
and the transverse coordinates are conveniently chosen
as ρ =

√

x2 + y2 and the azimuthal angle φ. Ultrarel-
ativistic kinematics in the beam direction suggests the
longitudinal proper time τ =

√
t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
longitudinal and temporal coordinates:

Rµ =
(

τ ch η, ρ cosφ, ρ sinφ, τ sh η
)

. (2.4)

The particle momenta are parametrized by their rapid-
ity Y = arth (Pz/E) along the beam direction and their
transverse mass Mt =

√

M2 + P 2
t :

Pµ =
(

Mt chY, Pt cosΦ, Pt sinΦ, Mt shY
)

. (2.5)

The flow 4-velocity is conveniently parametrized in terms
of longitudinal and transverse flow rapidities ηl and ηt,
respectively:

uµ(R) =
(

ch ηl ch ηt, sh ηt cosφ, sh ηt sinφ, sh ηl ch ηt
)

,

(2.6)

where th ηi = vi, i = l, t, defines the corresponding flow
velocities. In the spirit of Bjorken [43] we assume a scal-
ing velocity profile vl = z/t in the beam direction while
taking a power-law rapidity profile in the transverse di-
rection which is independent of z and t:

ηl(τ, η, ρ) = η, ηt(τ, η, ρ) = ηf

(

ρ

∆ρ

)α

. (2.7)

Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form

fi(R,P ) = eµi/T e−P ·u(R)/T H(R), i = p, n (2.8a)

H(R) = H(η, ρ) = exp
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. (2.8b)

The density profile is normalized to a total covariant
freeze-out volume Vcov:

Vcov =
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d4R H̄(R) = (2π)
3
2 (∆ρ)2 (∆η) τ0 , (2.9)

where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral

∫

d4RSi(R,P ) over an emission
function
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(2π)3
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× H̃(η, ρ) J(τ) . (2.10)

[H̃(η, ρ) =
√

(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =

√

2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-
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General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.

C. Cluster spectra from the model source

Inserting the expressions from Sec. II A into Eq. (2.3)
one is led to the following integral:
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Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form

fi(R,P ) = eµi/T e−P ·u(R)/T H(R), i = p, n (2.8a)

H(R) = H(η, ρ) = exp

(

−
ρ2

2(∆ρ)2
−

η2

2(∆η)2

)

. (2.8b)

The density profile is normalized to a total covariant
freeze-out volume Vcov:

Vcov =

∫

d4R H̄(R) = (2π)
3
2 (∆ρ)2 (∆η) τ0 , (2.9)

where d4R = τdτ ρdρ dη dφ. For freeze-out at constant
longitudinal proper time, the integration measure in (2.3)
over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration

In [9], instead of a Cooper-Frye integral over a 3-dim
freeze-out hypersurface, invariant spectra are calculated
as a space-time integral

∫

d4RSi(R,P ) over an emission
function

Si(R,P ) =
2Ji + 1

(2π)3
Mt ch (η − Y ) e(µi−P ·u(R))/T

× H̃(η, ρ) J(τ) . (2.10)

[H̃(η, ρ) =
√

(2/π)H(η, ρ) differs from (2.8) only by
the normalization. The present choice is more convenient
for us because it absorbs some constant terms in the clus-
ter spectra below which would otherwise scale with the
nucleon number. However, it affects the interpretation
of the total fireball volume (Ṽcov =

√

2/πVcov), and of
the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
is the fugacity averaged over the fireball; in the present
case it is the fugacity at R = (τ0,R = 0 ).]
The function J(τ) implements a smearing of the freeze-

out hypersurface around τ0; the choice in [9] is

J(τ) =
1

∆τ
√
2π

exp

(

(τ − τ0)2

2(∆τ)2

)

. (2.11)

General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.

C. Cluster spectra from the model source

Inserting the expressions from Sec. II A into Eq. (2.3)
one is led to the following integral:

4

We consider only very central (impact parameter b ≈
0) collisions. The fireball is then azimutally symmetric
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and the transverse coordinates are conveniently chosen
as ρ =

√
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√
t2 − z2 and the longitu-

dinal space-time-rapidity η = arth (z/t) as appropriate
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(

τ ch η, ρ cosφ, ρ sinφ, τ sh η
)

. (2.4)

The particle momenta are parametrized by their rapid-
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transverse mass Mt =

√

M2 + P 2
t :

Pµ =
(

Mt chY, Pt cosΦ, Pt sinΦ, Mt shY
)

. (2.5)
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uµ(R) =
(

ch ηl ch ηt, sh ηt cosφ, sh ηt sinφ, sh ηl ch ηt
)

,

(2.6)

where th ηi = vi, i = l, t, defines the corresponding flow
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(

ρ

∆ρ

)α

. (2.7)

Here ∆ρ characterizes the transverse size of the fireball
(see below), while ηf represents the strength of the trans-
verse flow; the power α of the transverse flow profile is
generally chosen as α = 1, except for some tests with
α=0.5 and α=2 as noted in the text.
As the fireball expands the scattering rate of the parti-

cles decreases until finally the thermalization of the sys-
tem breaks down and the particles freeze out. Consis-
tently with the above Ansatz for the expansion flow pro-
file we assume that this happens at a fixed longitudinal
proper time τ0 and set H̄(R) = H(η, ρ) δ(τ − τ0). For
the longitudinal and transverse shape of the density pro-
file H(R) we take Gaussians with widths ∆η and ∆ρ,
respectively.
With these ingredients the distribution functions in

(2.3) take the form

fi(R,P ) = eµi/T e−P ·u(R)/T H(R), i = p, n (2.8a)
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over the freeze-out hypersurface is given by P · d3σ(R) =
τ0 Mt ρ dρ ch (η − Y ) dη dφ.

B. Non-zero emission duration
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the fugacity factor exp(µ/T ). In the case of Ref. [9], µ/T
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General conditions for J(τ) are
∫

dτ J(τ) = 1,
∫

dτ τ J(τ)
= τ0, and ∆τ ≪ τ0. The last one ensures that one
can treat fi and H as τ -independent, and that freeze-
out times τ < 0 play no physical role.
For single-hadron spectra J(τ) can be immediately in-

tegrated over, reducing the space-time integral over the
emission function to the Cooper-Frye form (2.1) with
(2.8). A non-zero duration of particle emission (∆τ > 0)
has, however, an effect on cluster formation and on
other two-particle correlations. In [9], two-pion corre-
lation data from Pb+Pb collisions at the SPS were fitted
with ∆τ = 1.5 fm/c, although with considerable uncer-
tainty [44]. This value appears to be small enough to be
able to neglect the τ -dependence of the parameters in fi
and H ; since estimates in [45] have shown that the effect
of ∆τ > 0 on cluster formation should then be small, we
will continue to use the simpler Cooper-Frye formalism
(2.3) also for cluster spectra.

C. Cluster spectra from the model source

Inserting the expressions from Sec. II A into Eq. (2.3)
one is led to the following integral:

4

radius ρ0 =
√

5/3 ρrms, can expand in time τ0 at most
to a maximum transverse radius of ρmax = ρ0 + τ0 (even
less, if the transverse expansion velocity is < c). Thus,
no matter should exist at radii ρ > ρmax. In our case
nucleons with transverse velocities vt > 0.6 c tend to be
emitted from causally forbidden regions. (For the lighter
pions the problem is much less severe due to the larger
thermal smearing.)
For the Gaussian density profile (2.8b) we will there-

fore restrict our attention to nucleons and clusters with
vt ≤ 0.6 c, i.e. 1.0 ≤ Mt/M ≤ 1.25. For a proper descrip-
tion of clusters with larger velocities the Gaussian trans-
verse density profile must be modified, either by cutting
it off by hand or by replacing it with a causally consis-
tent box profile. Unfortunately, this forfeits the simple
analytical expressions (2.14-2.16) and the direct compa-
rability with the published results from HBT analyses of
two-pion correlations [3,9,44].
As for the longitudinal rapidity spectrum of clusters,

we expect from Eq. (2.14) for its width a decrease with
1/

√
A compared to nucleons.

E. Effective source volume Veff and relation to HBT

The Boltzmann factor in (2.8a) couples the particle
momentum to the flow vector u(R). This causes a cor-
relation between the velocity and the spatial coordinates
of the particle, with a “coupling constant” M/T which
increases with the particle mass. Particles inside the fire-
ball are thus sorted with respect to their velocities, and
particles of given momentum are localized in regions of
the fireball where the flow velocity is close to the particle
velocity.
Thus only a fraction of the total fireball volume Vcov

is able to emit particles with given momentum. It is
this “homogeneity volume” Vhom(mt) which is accessi-
ble through HBT measurements [3]. The HBT radii
R∥(mt) and R⊥(mt) which can be extracted from the 2-
particle correlation function in the YKP parametrization
[57] describe the corresponding longitudinal and trans-
verse lengths of homogeneity in the source. They can be
evaluated for the model (2.8) as space-time variances of
the source using the general expressions given in [57]. If
these variances are evaluated in the saddle-point approx-
imation (2.13) one finds [46,57]

R⊥(mt) =
∆ρ

√

1 + mt

T η2f

, (2.17a)

R∥(mt) =
τ0 ∆η

√

1 + mt

T (∆η)2
. (2.17b)

These are just the factors occurring in the effective vol-
ume (2.15) for A = 1:

Veff(1,mt) = (2π)3/2 R∥(mt)R2
⊥(mt)

≡ (2π)3/2 Vhom(mt) . (2.18)

Thus the effective volume Veff in the cluster spectrum
(2.14) is very closely related to the homogeneity volume
extracted from HBTmeasurements with pairs of identical
hadrons:

Veff(A,Mt) =
Veff(1,mt)

A3/2
=

(

2π

A

)3/2

Vhom(mt) . (2.19)

For deuterons this implies an effective volume which is
about 1/3 that of the nucleons.
Since at AGS and SPS energies∆η >∼ 1 (see Sect. II F),

the longitudinal flow term ∼ (mt/T )(∆η)2 in R∥ dom-
inates over the geometric term ∼ 1. In the transverse
direction the flow term ∼ (mt/T )η2f is much smaller,
and the two terms compete with each other, depend-
ing on the value of ηf . Higher temperature increases,
larger transverse flow decreases the lengths of homo-
geneity. For fixed T, ηf the homogeneity lengths de-
crease with increasing transverse mass mt. According
to Eqs. (2.18,2.19) this implies for fixed particle mo-
menta a decrease of Veff(mt) with the particle rest mass
roughly like M−3/2. Due to the non-negligible geomet-
ric contribution in R⊥ the decrease is actually somewhat
weaker; for realistic parameters (see below) the combina-
tion MtVeff in (2.14b) turns out to be practically inde-
pendent of Mt: MtVeff(A,Mt) ≈ MVeff(A,M).
Eqs. (2.17-2.19) indicate perfect mt-scaling of the HBT

radii and the effective volume. If true, the values of Veff

to be used in (2.14b) for nuclear clusters could be di-
rectly extracted from two-pion HBT measurements at
very high pt such that the transverse mass Mt would
be the same. Unfortunately, this is an artifact of the
saddle-point approximation (2.13) [48]; a numerical eval-
uation shows that mt-scaling of the HBT radii is broken
by transverse flow, albeit weakly [57,3]. Appropriate care
must thus be taken before using (2.18) to compare the
effective volume Veff in cluster formation with the homo-
geneity volume Vhom extracted from HBT measurements
with pions or kaons.

F. Parameters for central Pb+Pb collisions

We close this section by specifying the model param-
eters to be used later in the calculation of cluster yields
and spectra. In Pb+Pb collisions at 158GeV per nu-
cleon, mid-rapidity is at ycm = 2.91. For very central col-
lisions (4-5% of the total inelastic cross section σinel

tot , cor-
responding to impact parameters b ≤ 3.5 fm), the analy-
sis of pion spectra and two-pion correlations from NA49
[10,58,59] led to the following estimates for the model
parameters [9,44]: ∆η ≈ 1.3, ∆ρ ≈ 7 fm, τ0 ≈ 9 fm/c,
∆τ ≈ 1.5 fm/c, ηf ≈ 0.35 and T ≈ 130MeV. To esti-
mate the effects of possible errors in T and ηf , we will
additionally test the (T, ηf ) combinations of (100MeV,
0.43) and (168MeV, 0.28), which also describe the slope
of the single particle mt-spectrum of negatively charged
hadrons (mainly pions), but not the behaviour of the
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hydro model gives Gaussian source:
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done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �
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µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =

P

0
d

dNd
d

3
Pd⇣

p

0 dN

d

3
p

⌘2 , (18)

with p = P

d

/2 and where p

0 dN

d

3
p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as

C2(P, q) =

p

0
1 p

0
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G

s

2 �G

a

2

G

s

2 +G

a

2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =
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2 +G
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2A2

Z
d

3
qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have
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. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3

2m

Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

�

d

(~r) =

e

� ~r2

2d2

(⇡d

2
)

3
4
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with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6

B2 =

3⇡

3
2

2m

⇣
R

2
? +

�
d

2

�2⌘q
R

2
|| +

�
d

2
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6 See also [16, 37].
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While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t
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R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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(which would be discussed later), Ref. [9] parametrised two-
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(GSM) of the HXS 1-particle Wigner densities to calculate
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the latter), and expressed the coalescence factor in terms of
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t
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Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
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Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =

P

0
d

dNd
d

3
Pd⇣

p

0 dN

d

3
p

⌘2 , (18)

with p = P

d

/2 and where p

0 dN

d

3
p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as

C2(P, q) =

p

0
1 p

0
2

dN

d

3
p1d

3
p2⇣

p

0
1

dN

d

3
p1

⌘⇣
p

0
2

dN

d

3
p2

⌘
. (19)

The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as
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By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have
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Using these conventions and noting that �1 ⇡ �2 ⇡ �
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small |~q| ⌧ m, we are finally led to the result:
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Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P
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derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p
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at the same time enforcing ~

P =
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/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
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The numerator on the RHS of Eq. (19) sums together the
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G

s

2 �G

a

2

G

s

2 +G

a

2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =

G

d

G

s

2 +G

a

2

2m

m

2A2

Z
d

3
qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have

G

d

G

s

2 +G

a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3

2m

Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

�

d

(~r) =

e

� ~r2

2d2

(⇡d

2
)

3
4

(25)

with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6

B2 =

3⇡

3
2

2m

⇣
R

2
? +

�
d

2

�2⌘q
R

2
|| +

�
d

2

�2 , (GSM).

(28)

6 See also [16, 37].
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The numerator on the RHS of Eq. (19) sums together the
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With these  
assumptions:

C0
t ≈

∫

3
3
2 d3ρ d3λ |ϕ(r1, r2, r3)|2

×
f
(

R1,
P
3

)

f
(

R2,
P
3

)

f
(

R3,
P
3

)

f3
(

R, P3
) (5.3)

where Ri =(R0, ri) are the space-time coordinates of the
three nucleons. The results C0

t=0.78+0.05
−0.06 for τ0=9 fm/c

and C0
t=0.67+0.06

−0.07 for τ0=6 fm/c, respectively, are not
much smaller than the corresponding values for the
deuteron. Whereas one would generically expect larger
flow effects for three than for two nucleons, the three
nucleons in the 3H/3He clusters occupy a smaller and
therefore more homogeneous region around their center
of mass.
As for the deuteron we expect that C0

t provides a good
estimate for the average correction factor ⟨Ct⟩. A more
rigorous calculation must, however, take into account the
binding energy which is larger and thus more important
than that of the deuteron. Unlike deuterons, tritons and
3He can be formed via an excited state by coalescence of
three nucleons without requiring additional particles for
energy-momentum conservation.

VI. EXTRACTING PHYSICS FROM MEASURED

CLUSTER SPECTRA

A. The invariant coalescence factor BA

According to (3.19), the invariant cluster spectra are
given by (2.14) multiplied by the quantum mechanical
correction factor ⟨CA⟩(P ):

E
dNA

d3P
≈ Mt

2JA+1

(2π)3
e

µ
A

−M

T ⟨CA⟩ (P ) Veff(A,Mt)

× exp

(

−
Mt −M

T ∗
−

AY 2

2(∆η)2

)

. (6.1)

For the invariant coalescence factor BA defined by (1.1)
we thus find

BA =
2JA+1

2A
A ⟨CA⟩

Veff(A,Mt)

Veff(1,mt)

(

(2π)3

mtVeff(1,mt)

)A−1

.

(6.2)

The factor A arises from Mt/mA
t = A/mA−1

t . (In case
of a static, non-expanding fireball the homogeneity vol-
ume Veff in this expression would be replaced by the
total fireball volume Vcov [15].) With Veff given by
Eqs. (2.18,2.19), we can write B2 as

B2 =
3 π3/2 ⟨Cd⟩

2mt R2
⊥(mt)R∥(mt)

. (6.3)

Note that the last exponential factor in (6.1), which de-
pends strongly on Mt and Y , has cancelled in the ra-
tio. With ⟨Cd⟩ given by (4.12), B2 can thus be expressed

completely in terms of the deuteron size d and the ho-
mogeneity lengths (“HBT radii”) R⊥, R∥.
Eq. (6.3) implies that, in the model of Sec. II, BA

is almost momentum independent: both mtVeff(1,mt)
and ⟨CA⟩ depend only very weakly on mt and Y . An
important precondition for this weak mt-dependence of
B2 is, of course, the cancellation of the exp(−Mt/T ∗)-
factors; as discussed in Sec. II D, the latter is due to
the Gaussian form of the transverse density profile in
H(R) which according to (2.16) causes identical inverse
slope parameters T ∗ for all clusters. We have mentioned
before that this is inconsistent with the measurements
(see Sec. VII B below), and that more box-like transverse
density profiles are phenomenologically preferred. In this
case Eq. (6.3) must be amended as follows:

B2 =
3 π3/2 ⟨Cd⟩

2mtR2
⊥(mt)R∥(mt)

e
2(mt−m)

(

1
T∗
p
− 1

T∗

d

)

. (6.4)

Eqs. (4.12,6.4) are the most important theoretical results
of the present paper.
Since neutrons are hard to measure, experiments usu-

ally do not provide BA, but rather

B∗
A = EA

dNA

d3PA

/

(

Ep
dNp

d3Pp

)Z+N
∣

∣

∣

∣

∣

Pp=PA/A

= BA exp

(

N(µn − µp)

T

)

. (6.5)

Here possibly different chemical potentials for neutrons
and protons are important: If nucleons and antinucleons
have the same temperature, flow and freeze-out density
distribution, as we have assumed, our model yields iden-
tical coalescence factors BA and BĀ for clusters made of
matter and antimatter. For µn ̸= µp the corresponding
values B∗

A and B∗
Ā

will, however, be different, and they
will also differ from BA. If the initial neutron excess
of the cold Pb nuclei were still present at freeze-out, we
would expect for Pb+Pb collisions B∗

d ≈ 1.5Bd ≈ 2.3B∗
d̄
,

i.e. quite large differences. Of course, it is not likely that
the large net isospin remains in the neutron channel until
freeze-out; a considerable fraction is expected to boil off
with other produced particles. Nevertheless, there may
be a visible effect of µn ̸= µp on B∗

2 and especially on B∗
3

for 3H (which contains 2 neutrons), as well as a charac-
teristic difference in the B∗

3 values for 3H and 3He.

B. Cluster fugacities

From the ratio of particles to antiparticles the fugaci-
ties can be calculated:

EA
dNA

d3PA

EĀ
dNĀ

d3PĀ

∣

∣

∣

∣

∣

PA=PĀ

= exp

(

2µA

T

)

= λ2A . (6.6)
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170 MeV if energy conservation is properly accounted for;
if not, the deviations have the opposite sign, but remain
below 5%.
Given the high accuracy of (3.21), we can use it for

a check of the sensitivity of C0
d on the choice of the in-

ternal deuteron wave function. A numerical integration
of (3.21) with the Hulthen wave function (3.4a) yields
values for C0

d which are somewhat larger than those for
harmonic oscillator wave functions. For the source pa-
rameters given in Sec. II F we obtain for the harmonic os-
cillator wave function C0

d = 0.81+0.03
−0.05 and for the Hulthen

form C0
d = 0.84+0.02

−0.04 (where the upper and lower limits
indicate the effects from the estimated uncertainties in
(T, ηf )). The numbers in Table I show that the differ-
ences are sensitive mainly to the transverse and longitu-
dinal flow gradients; they remain on the level of a few per-
cent for weakly expanding sources (leftmost column), be-
come stronger for more rapidly expanding sources (right-
most column), and can reach a factor of 2 or 3 in systems
with very small interaction volume (pp collisions).
The origin of the difference is readily understood:

while both wave functions provide the same rms radius,
the maximum of r2|ϕd(r)|2 is at r ≈ 1.5 fm for the
Hulthen form and at r ≈ 3 fm for the harmonic oscil-
lator. Since the “homogeneity factor” in (3.21) peaks at
small values of r, especially for strongly expanding sys-
tems with small homogeneity radii, the integral is larger
for the more realistic Hulthen wave function than for the
harmonic oscillator one.
Numerical calculations show that Cd(Rd, Pd) varies

much less as a function of Rd than f2(Rd, Pd/2). On
the other hand, the particular point R̄d with u(R̄d)=b
at which C0

d was evaluated corresponds to the maximum
of Cd(Rd, Pd), to the maximum of the Boltzmann part
of f(Rd, Pd/2), and thus approximately to the maxi-
mum of integrand in the numerator of (4.8). We can
therefore pull Cd(R̄d, Pd) = C0

d in front of that inte-
gral and thus have ⟨Cd⟩ ≈ C0

d. A numerical check gave
⟨Cd⟩ (P d=0) = 0.79 instead of C0

d = 0.81.
For a boost-invariant source, where every comoving ob-

server has identical surroundings, we expect Cd(Rd, Pd)
to depend only on the difference between the local
flow velocity and the deuteron’s velocity, Cd(Rd, Pd) =
Cd(u(Rd) − b), and ⟨Cd⟩ to be independent of Pd. In
our fireball longitudinal boost-invariance is broken by the
density profile H(R). However, for the Gaussian profile
used here ⟨Cd⟩ still turns out to be independent of the
deuteron’s longitudinal rapidity. In the transverse direc-
tion we have no boost-invariance at all. As a consequence
we find a slight decrease of ⟨Cd⟩ with increasing trans-
verse velocity of the deuteron. Deuterons with non-zero
transverse velocity see the fireball Lorentz-contracted in
their direction of motion; this decreases the correspond-
ing length of homogeneity and thus ⟨Cd⟩. In the region
mt/m ≤ 1.25, i.e. vt ≤ 0.6 c, to which we restrict our dis-
cussion in the case of Gaussian transverse density profiles
(see the discussion at the end of Sec. II D), this effect is

small and ⟨Cd⟩ is approximately constant.
We can summarize the results of this section in the fol-

lowing approximate formula for the quantum mechanical
correction factor in terms of the deuteron size parameter
d and the longitudinal and transverse lengths of homo-
geneity for nucleons:

⟨Cd⟩ ≈
1

(

1 +

(

d

2R⊥(m)

)2
)
√

1 +

(

d

2R∥(m)

)2
.

(4.12)

This expression does not depend on the longitudinal ra-
pidity and, for small transverse velocities, only weakly
on the transverse momentum of the deuteron. Apply-
ing this expression to p+p collisions and inserting corre-
spondingly for the homogeneity lengths about 1 fm each
one obtains ⟨Cd⟩ ≈ 0.15 in good numerical agreement
with Hagedorn’s value (3.22).

V. LARGER CLUSTERS: 3
1H AND 3

2HE

In this section we give a quick estimate of the quantum
mechanical correction factor for clusters made of three
nucleons, i.e. for 3H and 3He. Clearly, for three nucleons
the internal wave function and its Wigner transform is
much more complicated than for deuterons. For the three
nucleons with coordinates r1, r2 and r3, we introduce the
c.m. coordinates R = (r1+r2+r3)/3 and the relative co-
ordinates ρ = (r1−r2)/

√
2 and λ = (r1+r2−2r3)/

√
6.

With this choice we have r2
1+r2

2+r23 = R2+ρ2+λ2 and
d3r1 d3r2 d3r3 = 3

3
2 d3Rd3ρ d3λ. As before we approxi-

mate the internal wave function by a spherical harmonic
oscillator solution [65]:

ϕ(r1, r2, r3) =
(

3π2b4
)−3/4

exp

(

−
ρ2+λ2

2b2

)

. (5.1)

This wave function is normalized and has the rms radius
b:
∫

33/2 d3ρ d3λ|ϕ(r1, r2, r3)|2 = 1 ,

r2rms =

∫

33/2 d3ρ d3λ
ρ2+λ2

3
|ϕ(r1, r2, r3)|2 = b2 .

Both clusters are spin- 12 fermions, and the binding en-
ergies and rms radii are approximately −8MeV and
1.75 fm. (Note that this rms radius is smaller than for
deuterons!) 3He is somewhat more loosely bound than
3H, but we neglect this difference here.
To estimate C0

t for a 3H/3He cluster at rest in the center
of the fireball, with momentum P = (3m,P=0) and c.m.
coordinates R = (R0,R=0), we evaluated numerically
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This expression does not depend on the longitudinal ra-
pidity and, for small transverse velocities, only weakly
on the transverse momentum of the deuteron. Apply-
ing this expression to p+p collisions and inserting corre-
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nucleons with coordinates r1, r2 and r3, we introduce the
c.m. coordinates R = (r1+r2+r3)/3 and the relative co-
ordinates ρ = (r1−r2)/

√
2 and λ = (r1+r2−2r3)/

√
6.

With this choice we have r2
1+r2

2+r23 = R2+ρ2+λ2 and
d3r1 d3r2 d3r3 = 3

3
2 d3Rd3ρ d3λ. As before we approxi-

mate the internal wave function by a spherical harmonic
oscillator solution [65]:

ϕ(r1, r2, r3) =
(

3π2b4
)−3/4

exp

(

−
ρ2+λ2

2b2

)

. (5.1)

This wave function is normalized and has the rms radius
b:
∫

33/2 d3ρ d3λ|ϕ(r1, r2, r3)|2 = 1 ,

r2rms =

∫

33/2 d3ρ d3λ
ρ2+λ2

3
|ϕ(r1, r2, r3)|2 = b2 .

Both clusters are spin- 12 fermions, and the binding en-
ergies and rms radii are approximately −8MeV and
1.75 fm. (Note that this rms radius is smaller than for
deuterons!) 3He is somewhat more loosely bound than
3H, but we neglect this difference here.
To estimate C0

t for a 3H/3He cluster at rest in the center
of the fireball, with momentum P = (3m,P=0) and c.m.
coordinates R = (R0,R=0), we evaluated numerically
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done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �

d

R
d

3
Rf

d

!
(1/2m)

R ⇥
d

3
�

µ

P

µ

d

⇤
f

d

, where d

3
�

µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =

P

0
d

dNd
d

3
Pd⇣

p

0 dN

d

3
p

⌘2 , (18)

with p = P

d

/2 and where p

0 dN

d

3
p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as

C2(P, q) =

p

0
1 p

0
2

dN

d

3
p1d

3
p2⇣

p

0
1

dN

d

3
p1

⌘⇣
p

0
2

dN

d

3
p2

⌘
. (19)

The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G

s

2 �G

a

2

G

s

2 +G

a

2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =

G

d

G

s

2 +G

a

2

2m

m

2A2

Z
d

3
qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have

G

d

G

s

2 +G

a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3

2m

Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

�

d

(~r) =

e

� ~r2

2d2

(⇡d

2
)

3
4

(25)

with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6

B2 =

3⇡

3
2

2m

⇣
R

2
? +

�
d

2

�2⌘q
R

2
|| +

�
d

2

�2 , (GSM).

(28)

6 See also [16, 37].

With these  
assumptions:

C0
t ≈

∫

3
3
2 d3ρ d3λ |ϕ(r1, r2, r3)|2

×
f
(

R1,
P
3

)

f
(

R2,
P
3

)

f
(

R3,
P
3

)

f3
(

R, P3
) (5.3)

where Ri =(R0, ri) are the space-time coordinates of the
three nucleons. The results C0

t=0.78+0.05
−0.06 for τ0=9 fm/c

and C0
t=0.67+0.06

−0.07 for τ0=6 fm/c, respectively, are not
much smaller than the corresponding values for the
deuteron. Whereas one would generically expect larger
flow effects for three than for two nucleons, the three
nucleons in the 3H/3He clusters occupy a smaller and
therefore more homogeneous region around their center
of mass.
As for the deuteron we expect that C0

t provides a good
estimate for the average correction factor ⟨Ct⟩. A more
rigorous calculation must, however, take into account the
binding energy which is larger and thus more important
than that of the deuteron. Unlike deuterons, tritons and
3He can be formed via an excited state by coalescence of
three nucleons without requiring additional particles for
energy-momentum conservation.

VI. EXTRACTING PHYSICS FROM MEASURED

CLUSTER SPECTRA

A. The invariant coalescence factor BA

According to (3.19), the invariant cluster spectra are
given by (2.14) multiplied by the quantum mechanical
correction factor ⟨CA⟩(P ):

E
dNA

d3P
≈ Mt

2JA+1

(2π)3
e

µ
A

−M

T ⟨CA⟩ (P ) Veff(A,Mt)

× exp

(

−
Mt −M

T ∗
−

AY 2

2(∆η)2

)

. (6.1)

For the invariant coalescence factor BA defined by (1.1)
we thus find

BA =
2JA+1

2A
A ⟨CA⟩

Veff(A,Mt)

Veff(1,mt)

(

(2π)3

mtVeff(1,mt)

)A−1

.

(6.2)

The factor A arises from Mt/mA
t = A/mA−1

t . (In case
of a static, non-expanding fireball the homogeneity vol-
ume Veff in this expression would be replaced by the
total fireball volume Vcov [15].) With Veff given by
Eqs. (2.18,2.19), we can write B2 as

B2 =
3 π3/2 ⟨Cd⟩

2mt R2
⊥(mt)R∥(mt)

. (6.3)

Note that the last exponential factor in (6.1), which de-
pends strongly on Mt and Y , has cancelled in the ra-
tio. With ⟨Cd⟩ given by (4.12), B2 can thus be expressed

completely in terms of the deuteron size d and the ho-
mogeneity lengths (“HBT radii”) R⊥, R∥.
Eq. (6.3) implies that, in the model of Sec. II, BA

is almost momentum independent: both mtVeff(1,mt)
and ⟨CA⟩ depend only very weakly on mt and Y . An
important precondition for this weak mt-dependence of
B2 is, of course, the cancellation of the exp(−Mt/T ∗)-
factors; as discussed in Sec. II D, the latter is due to
the Gaussian form of the transverse density profile in
H(R) which according to (2.16) causes identical inverse
slope parameters T ∗ for all clusters. We have mentioned
before that this is inconsistent with the measurements
(see Sec. VII B below), and that more box-like transverse
density profiles are phenomenologically preferred. In this
case Eq. (6.3) must be amended as follows:

B2 =
3 π3/2 ⟨Cd⟩

2mtR2
⊥(mt)R∥(mt)

e
2(mt−m)

(

1
T∗
p
− 1

T∗

d

)

. (6.4)

Eqs. (4.12,6.4) are the most important theoretical results
of the present paper.
Since neutrons are hard to measure, experiments usu-

ally do not provide BA, but rather

B∗
A = EA

dNA

d3PA

/

(

Ep
dNp

d3Pp

)Z+N
∣

∣

∣

∣

∣

Pp=PA/A

= BA exp

(

N(µn − µp)

T

)

. (6.5)

Here possibly different chemical potentials for neutrons
and protons are important: If nucleons and antinucleons
have the same temperature, flow and freeze-out density
distribution, as we have assumed, our model yields iden-
tical coalescence factors BA and BĀ for clusters made of
matter and antimatter. For µn ̸= µp the corresponding
values B∗

A and B∗
Ā

will, however, be different, and they
will also differ from BA. If the initial neutron excess
of the cold Pb nuclei were still present at freeze-out, we
would expect for Pb+Pb collisions B∗

d ≈ 1.5Bd ≈ 2.3B∗
d̄
,

i.e. quite large differences. Of course, it is not likely that
the large net isospin remains in the neutron channel until
freeze-out; a considerable fraction is expected to boil off
with other produced particles. Nevertheless, there may
be a visible effect of µn ̸= µp on B∗

2 and especially on B∗
3

for 3H (which contains 2 neutrons), as well as a charac-
teristic difference in the B∗

3 values for 3H and 3He.

B. Cluster fugacities

From the ratio of particles to antiparticles the fugaci-
ties can be calculated:

EA
dNA

d3PA

EĀ
dNĀ

d3PĀ

∣

∣

∣

∣

∣

PA=PĀ

= exp

(

2µA

T

)

= λ2A . (6.6)
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170 MeV if energy conservation is properly accounted for;
if not, the deviations have the opposite sign, but remain
below 5%.
Given the high accuracy of (3.21), we can use it for

a check of the sensitivity of C0
d on the choice of the in-

ternal deuteron wave function. A numerical integration
of (3.21) with the Hulthen wave function (3.4a) yields
values for C0

d which are somewhat larger than those for
harmonic oscillator wave functions. For the source pa-
rameters given in Sec. II F we obtain for the harmonic os-
cillator wave function C0

d = 0.81+0.03
−0.05 and for the Hulthen

form C0
d = 0.84+0.02

−0.04 (where the upper and lower limits
indicate the effects from the estimated uncertainties in
(T, ηf )). The numbers in Table I show that the differ-
ences are sensitive mainly to the transverse and longitu-
dinal flow gradients; they remain on the level of a few per-
cent for weakly expanding sources (leftmost column), be-
come stronger for more rapidly expanding sources (right-
most column), and can reach a factor of 2 or 3 in systems
with very small interaction volume (pp collisions).
The origin of the difference is readily understood:

while both wave functions provide the same rms radius,
the maximum of r2|ϕd(r)|2 is at r ≈ 1.5 fm for the
Hulthen form and at r ≈ 3 fm for the harmonic oscil-
lator. Since the “homogeneity factor” in (3.21) peaks at
small values of r, especially for strongly expanding sys-
tems with small homogeneity radii, the integral is larger
for the more realistic Hulthen wave function than for the
harmonic oscillator one.
Numerical calculations show that Cd(Rd, Pd) varies

much less as a function of Rd than f2(Rd, Pd/2). On
the other hand, the particular point R̄d with u(R̄d)=b
at which C0

d was evaluated corresponds to the maximum
of Cd(Rd, Pd), to the maximum of the Boltzmann part
of f(Rd, Pd/2), and thus approximately to the maxi-
mum of integrand in the numerator of (4.8). We can
therefore pull Cd(R̄d, Pd) = C0

d in front of that inte-
gral and thus have ⟨Cd⟩ ≈ C0

d. A numerical check gave
⟨Cd⟩ (P d=0) = 0.79 instead of C0

d = 0.81.
For a boost-invariant source, where every comoving ob-

server has identical surroundings, we expect Cd(Rd, Pd)
to depend only on the difference between the local
flow velocity and the deuteron’s velocity, Cd(Rd, Pd) =
Cd(u(Rd) − b), and ⟨Cd⟩ to be independent of Pd. In
our fireball longitudinal boost-invariance is broken by the
density profile H(R). However, for the Gaussian profile
used here ⟨Cd⟩ still turns out to be independent of the
deuteron’s longitudinal rapidity. In the transverse direc-
tion we have no boost-invariance at all. As a consequence
we find a slight decrease of ⟨Cd⟩ with increasing trans-
verse velocity of the deuteron. Deuterons with non-zero
transverse velocity see the fireball Lorentz-contracted in
their direction of motion; this decreases the correspond-
ing length of homogeneity and thus ⟨Cd⟩. In the region
mt/m ≤ 1.25, i.e. vt ≤ 0.6 c, to which we restrict our dis-
cussion in the case of Gaussian transverse density profiles
(see the discussion at the end of Sec. II D), this effect is

small and ⟨Cd⟩ is approximately constant.
We can summarize the results of this section in the fol-

lowing approximate formula for the quantum mechanical
correction factor in terms of the deuteron size parameter
d and the longitudinal and transverse lengths of homo-
geneity for nucleons:

⟨Cd⟩ ≈
1

(

1 +

(

d

2R⊥(m)

)2
)
√

1 +

(

d

2R∥(m)

)2
.

(4.12)

This expression does not depend on the longitudinal ra-
pidity and, for small transverse velocities, only weakly
on the transverse momentum of the deuteron. Apply-
ing this expression to p+p collisions and inserting corre-
spondingly for the homogeneity lengths about 1 fm each
one obtains ⟨Cd⟩ ≈ 0.15 in good numerical agreement
with Hagedorn’s value (3.22).

V. LARGER CLUSTERS: 3
1H AND 3

2HE

In this section we give a quick estimate of the quantum
mechanical correction factor for clusters made of three
nucleons, i.e. for 3H and 3He. Clearly, for three nucleons
the internal wave function and its Wigner transform is
much more complicated than for deuterons. For the three
nucleons with coordinates r1, r2 and r3, we introduce the
c.m. coordinates R = (r1+r2+r3)/3 and the relative co-
ordinates ρ = (r1−r2)/

√
2 and λ = (r1+r2−2r3)/

√
6.

With this choice we have r2
1+r2

2+r23 = R2+ρ2+λ2 and
d3r1 d3r2 d3r3 = 3

3
2 d3Rd3ρ d3λ. As before we approxi-

mate the internal wave function by a spherical harmonic
oscillator solution [65]:

ϕ(r1, r2, r3) =
(

3π2b4
)−3/4

exp

(

−
ρ2+λ2

2b2

)

. (5.1)

This wave function is normalized and has the rms radius
b:
∫

33/2 d3ρ d3λ|ϕ(r1, r2, r3)|2 = 1 ,

r2rms =

∫

33/2 d3ρ d3λ
ρ2+λ2

3
|ϕ(r1, r2, r3)|2 = b2 .

Both clusters are spin- 12 fermions, and the binding en-
ergies and rms radii are approximately −8MeV and
1.75 fm. (Note that this rms radius is smaller than for
deuterons!) 3He is somewhat more loosely bound than
3H, but we neglect this difference here.
To estimate C0

t for a 3H/3He cluster at rest in the center
of the fireball, with momentum P = (3m,P=0) and c.m.
coordinates R = (R0,R=0), we evaluated numerically

12

170 MeV if energy conservation is properly accounted for;
if not, the deviations have the opposite sign, but remain
below 5%.
Given the high accuracy of (3.21), we can use it for

a check of the sensitivity of C0
d on the choice of the in-

ternal deuteron wave function. A numerical integration
of (3.21) with the Hulthen wave function (3.4a) yields
values for C0

d which are somewhat larger than those for
harmonic oscillator wave functions. For the source pa-
rameters given in Sec. II F we obtain for the harmonic os-
cillator wave function C0

d = 0.81+0.03
−0.05 and for the Hulthen

form C0
d = 0.84+0.02

−0.04 (where the upper and lower limits
indicate the effects from the estimated uncertainties in
(T, ηf )). The numbers in Table I show that the differ-
ences are sensitive mainly to the transverse and longitu-
dinal flow gradients; they remain on the level of a few per-
cent for weakly expanding sources (leftmost column), be-
come stronger for more rapidly expanding sources (right-
most column), and can reach a factor of 2 or 3 in systems
with very small interaction volume (pp collisions).
The origin of the difference is readily understood:

while both wave functions provide the same rms radius,
the maximum of r2|ϕd(r)|2 is at r ≈ 1.5 fm for the
Hulthen form and at r ≈ 3 fm for the harmonic oscil-
lator. Since the “homogeneity factor” in (3.21) peaks at
small values of r, especially for strongly expanding sys-
tems with small homogeneity radii, the integral is larger
for the more realistic Hulthen wave function than for the
harmonic oscillator one.
Numerical calculations show that Cd(Rd, Pd) varies

much less as a function of Rd than f2(Rd, Pd/2). On
the other hand, the particular point R̄d with u(R̄d)=b
at which C0

d was evaluated corresponds to the maximum
of Cd(Rd, Pd), to the maximum of the Boltzmann part
of f(Rd, Pd/2), and thus approximately to the maxi-
mum of integrand in the numerator of (4.8). We can
therefore pull Cd(R̄d, Pd) = C0

d in front of that inte-
gral and thus have ⟨Cd⟩ ≈ C0

d. A numerical check gave
⟨Cd⟩ (P d=0) = 0.79 instead of C0

d = 0.81.
For a boost-invariant source, where every comoving ob-

server has identical surroundings, we expect Cd(Rd, Pd)
to depend only on the difference between the local
flow velocity and the deuteron’s velocity, Cd(Rd, Pd) =
Cd(u(Rd) − b), and ⟨Cd⟩ to be independent of Pd. In
our fireball longitudinal boost-invariance is broken by the
density profile H(R). However, for the Gaussian profile
used here ⟨Cd⟩ still turns out to be independent of the
deuteron’s longitudinal rapidity. In the transverse direc-
tion we have no boost-invariance at all. As a consequence
we find a slight decrease of ⟨Cd⟩ with increasing trans-
verse velocity of the deuteron. Deuterons with non-zero
transverse velocity see the fireball Lorentz-contracted in
their direction of motion; this decreases the correspond-
ing length of homogeneity and thus ⟨Cd⟩. In the region
mt/m ≤ 1.25, i.e. vt ≤ 0.6 c, to which we restrict our dis-
cussion in the case of Gaussian transverse density profiles
(see the discussion at the end of Sec. II D), this effect is

small and ⟨Cd⟩ is approximately constant.
We can summarize the results of this section in the fol-

lowing approximate formula for the quantum mechanical
correction factor in terms of the deuteron size parameter
d and the longitudinal and transverse lengths of homo-
geneity for nucleons:

⟨Cd⟩ ≈
1

(

1 +

(

d

2R⊥(m)

)2
)
√

1 +

(

d

2R∥(m)

)2
.

(4.12)

This expression does not depend on the longitudinal ra-
pidity and, for small transverse velocities, only weakly
on the transverse momentum of the deuteron. Apply-
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done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �
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R
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d

!
(1/2m)
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d

3
�

µ
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⇤
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d

, where d

3
�

µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =

P

0
d

dNd
d

3
Pd⇣

p

0 dN

d

3
p

⌘2 , (18)

with p = P

d

/2 and where p

0 dN

d

3
p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as

C2(P, q) =

p

0
1 p

0
2

dN

d
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G
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2 �G
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2

G

s

2 +G

a

2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that
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Assuming unpolarised isospin-symmetric HXS [36] we have
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. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3

2m

Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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3
4

(25)

with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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(28)

6 See also [16, 37].
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III. COALESCENCE MODEL

The momentum distribution of the final state deuterons is expressed in the coalescence model through the momen-
tum distributions of protons and of neutrons at a half of the deuteron momentum

dNd

d3p
= A

dNp

d3
(

1
2
p
)

dNn

d3
(

1
2
p
) , (6)

where A is the deuteron formation rate which, see e.g. [26, 28], equals

A =
3

4
(2π)3

∫

d3r D(r) |φd(r)|2. (7)

The source function D(r) is the normalized to unity distribution of the relative space-time positions of the neutron
and proton at the kinetic freeze-out and φd(r) is the deuteron wave function of relative motion. The factor 3

4
reflects

the fact the deuterons come from the neutron-proton pairs in the spin triplet state. It is obviously assumed here that
the nucleons emitted from the fireball are unpolarized. The formula (6) does not assume, as one might think, that
the two nucleons are emitted simultaneously. The vector r denotes the inter-nucleon separation at the moment when
the second nucleon is emitted. For this reason, the function D(r) gives the space-time distribution.
To compute the deuteron yield according to the formula (6), the nucleon momentum distribution needs to be

specified. We write down the proton distribution in terms of the transverse momentum (pT ), transverse mass
(

mT ≡
√

m2 + p2T
)

, and rapidity (y) as

dNp

d3p
=

1

mT cosh y

dNp

dy d2pT
, (8)

and we choose the distribution at midrapidity in the form

dNp

dy d2pT
=

Np

2π∆y

eβkinm

Tkin(m+ Tkin)
e−βkinmT , (9)

where the number of protons Np is given by Eq. (1), ∆y is a small rapidity interval centered at y = 0 and Tkin is the
effective temperature at the kinetic freeze-out which takes into account the radial expansion of the fireball. As seen in
Eq. (9), the distribution is flat in rapidity and azimuthal angle and it exponentially decays with the transverse mass.
One checks that the distribution (9) obeys the normalization condition

∫

d3p
dNp

d3p
=

∫ ∆y/2

−∆y/2
dy

∫

d2pT
dNp

dy d2pT
= Np, (10)

for a sufficiently small ∆y. To obtain a good description of the deuteron momentum distribution in a broad range of
transverse momentum, the exponential parameterization (9) is insufficient. However, if both the normalization and
slope parameters are taken from experiment, the parameterization should be good enough to compute the total yield
of deuterons where low pT domain mostly matters.
The number of deuterons is found as

Nd ≡
∫

d3p
dNd

d3p
=

2N2
p

π ∆y

A
Tkin(Tkin +m)2

,

where the momentum distributions of protons and neutrons are assumed to be the same.
To obtain the final result of the deuteron yield in an analytic form, we do not use the Hulthén wave function of a

deuteron, as we did in [28], but we choose both the source and wave functions as Gaussian that is

D(r) =
e
−

r
2

4R2
kin

(4πR2
kin)

3/2
, |φd(r)|2 =

e
−

r
2

4R2
d

(4πR2
d)

3/2
, (11)

where Rkin is a space-time size of the fireball at the kinetic freeze-out and Rd is the deuteron radius. With the
parametrizations (11), the deuteron formation rate (7) is estimated as

A =
3

4

π3/2

(R2
kin +R2

d)
3/2

. (12)
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yield. The two-particle correlation function is constructed
as
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
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III. COALESCENCE MODEL

The momentum distribution of the final state deuterons is expressed in the coalescence model through the momen-
tum distributions of protons and of neutrons at a half of the deuteron momentum

dNd
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dNp
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(
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2
p
) , (6)

where A is the deuteron formation rate which, see e.g. [26, 28], equals

A =
3

4
(2π)3

∫

d3r D(r) |φd(r)|2. (7)

The source function D(r) is the normalized to unity distribution of the relative space-time positions of the neutron
and proton at the kinetic freeze-out and φd(r) is the deuteron wave function of relative motion. The factor 3

4
reflects

the fact the deuterons come from the neutron-proton pairs in the spin triplet state. It is obviously assumed here that
the nucleons emitted from the fireball are unpolarized. The formula (6) does not assume, as one might think, that
the two nucleons are emitted simultaneously. The vector r denotes the inter-nucleon separation at the moment when
the second nucleon is emitted. For this reason, the function D(r) gives the space-time distribution.
To compute the deuteron yield according to the formula (6), the nucleon momentum distribution needs to be

specified. We write down the proton distribution in terms of the transverse momentum (pT ), transverse mass
(

mT ≡
√

m2 + p2T
)

, and rapidity (y) as

dNp

d3p
=

1

mT cosh y

dNp

dy d2pT
, (8)

and we choose the distribution at midrapidity in the form
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eβkinm

Tkin(m+ Tkin)
e−βkinmT , (9)

where the number of protons Np is given by Eq. (1), ∆y is a small rapidity interval centered at y = 0 and Tkin is the
effective temperature at the kinetic freeze-out which takes into account the radial expansion of the fireball. As seen in
Eq. (9), the distribution is flat in rapidity and azimuthal angle and it exponentially decays with the transverse mass.
One checks that the distribution (9) obeys the normalization condition
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dNp

d3p
=

∫ ∆y/2
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dy
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d2pT
dNp

dy d2pT
= Np, (10)

for a sufficiently small ∆y. To obtain a good description of the deuteron momentum distribution in a broad range of
transverse momentum, the exponential parameterization (9) is insufficient. However, if both the normalization and
slope parameters are taken from experiment, the parameterization should be good enough to compute the total yield
of deuterons where low pT domain mostly matters.
The number of deuterons is found as

Nd ≡
∫

d3p
dNd

d3p
=

2N2
p

π ∆y

A
Tkin(Tkin +m)2

,

where the momentum distributions of protons and neutrons are assumed to be the same.
To obtain the final result of the deuteron yield in an analytic form, we do not use the Hulthén wave function of a

deuteron, as we did in [28], but we choose both the source and wave functions as Gaussian that is

D(r) =
e
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r
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4R2
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(4πR2
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e
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r
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, (11)

where Rkin is a space-time size of the fireball at the kinetic freeze-out and Rd is the deuteron radius. With the
parametrizations (11), the deuteron formation rate (7) is estimated as

A =
3

4

π3/2

(R2
kin +R2

d)
3/2

. (12)
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While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
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consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as
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By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have
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where the number of protons Np is given by Eq. (1), ∆y is a small rapidity interval centered at y = 0 and Tkin is the
effective temperature at the kinetic freeze-out which takes into account the radial expansion of the fireball. As seen in
Eq. (9), the distribution is flat in rapidity and azimuthal angle and it exponentially decays with the transverse mass.
One checks that the distribution (9) obeys the normalization condition
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for a sufficiently small ∆y. To obtain a good description of the deuteron momentum distribution in a broad range of
transverse momentum, the exponential parameterization (9) is insufficient. However, if both the normalization and
slope parameters are taken from experiment, the parameterization should be good enough to compute the total yield
of deuterons where low pT domain mostly matters.
The number of deuterons is found as
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,

where the momentum distributions of protons and neutrons are assumed to be the same.
To obtain the final result of the deuteron yield in an analytic form, we do not use the Hulthén wave function of a
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tum distributions of protons and of neutrons at a half of the deuteron momentum
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where A is the deuteron formation rate which, see e.g. [26, 28], equals
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4
(2π)3

∫

d3r D(r) |φd(r)|2. (7)

The source function D(r) is the normalized to unity distribution of the relative space-time positions of the neutron
and proton at the kinetic freeze-out and φd(r) is the deuteron wave function of relative motion. The factor 3

4
reflects

the fact the deuterons come from the neutron-proton pairs in the spin triplet state. It is obviously assumed here that
the nucleons emitted from the fireball are unpolarized. The formula (6) does not assume, as one might think, that
the two nucleons are emitted simultaneously. The vector r denotes the inter-nucleon separation at the moment when
the second nucleon is emitted. For this reason, the function D(r) gives the space-time distribution.
To compute the deuteron yield according to the formula (6), the nucleon momentum distribution needs to be
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where the number of protons Np is given by Eq. (1), ∆y is a small rapidity interval centered at y = 0 and Tkin is the
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for a sufficiently small ∆y. To obtain a good description of the deuteron momentum distribution in a broad range of
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where the momentum distributions of protons and neutrons are assumed to be the same.
To obtain the final result of the deuteron yield in an analytic form, we do not use the Hulthén wave function of a
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where Rkin is a space-time size of the fireball at the kinetic freeze-out and Rd is the deuteron radius. With the
parametrizations (11), the deuteron formation rate (7) is estimated as

A =
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. (12)
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m
2

B2

γd → 1
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done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �

d
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d
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(1/2m)
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µ
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⇤
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, where d
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µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =

P

0
d

dNd
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⌘2 , (18)

with p = P

d

/2 and where p

0 dN
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3
p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G

s

2 �G

a

2

G

s

2 +G

a

2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =
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d

G

s

2 +G
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2m
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2A2

Z
d

3
qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have
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a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3

2m

Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

�

d

(~r) =

e

� ~r2

2d2

(⇡d

2
)

3
4

(25)

with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6

B2 =

3⇡

3
2

2m

⇣
R

2
? +

�
d

2

�2⌘q
R

2
|| +

�
d

2

�2 , (GSM).

(28)

6 See also [16, 37].

Coalescence from correlation functions:

This formula is naive, of course.
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The numerator on the RHS of Eq. (19) sums together the
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
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(GSM) of the HXS 1-particle Wigner densities to calculate
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While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t
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R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
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We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
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match p
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are of order ~q2/m2.
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The numerator on the RHS of Eq. (19) sums together the
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.
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The numerator on the RHS of Eq. (19) sums together the
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While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
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in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that

B2(p) =

G

d

G

s

2 +G

a

2

2m

m

2A2

Z
d

3
qD(~q)F2(~p, ~q). (22)

Assuming unpolarised isospin-symmetric HXS [36] we have

G

d

G

s

2 +G

a

2

=

3

3 + 1

. (23)

Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3

2m

Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

�

d

(~r) =

e

� ~r2

2d2

(⇡d

2
)

3
4

(25)

with d = 3.2 fm. This leads to

D(

~

k) = e

�~k2d2

4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6

B2 =

3⇡

3
2

2m

⇣
R

2
? +

�
d

2

�2⌘q
R

2
|| +

�
d

2

�2 , (GSM).

(28)

6 See also [16, 37].

4

done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �

d

R
d

3
Rf

d

!
(1/2m)

R ⇥
d

3
�

µ

P

µ

d

⇤
f

d

, where d

3
�

µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor

B2(p) =

P

0
d

dNd
d

3
Pd⇣

p

0 dN

d

3
p

⌘2 , (18)

with p = P

d

/2 and where p

0 dN

d

3
p

is the unpolarised proton
yield. The two-particle correlation function is constructed
as

C2(P, q) =

p

0
1 p

0
2

dN

d

3
p1d

3
p2⇣

p

0
1

dN

d

3
p1

⌘⇣
p

0
2

dN

d

3
p2

⌘
. (19)

The numerator on the RHS of Eq. (19) sums together the
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This reproduces Eq. (1) and the main result of [17] (see
Eqs. (6.3) and (4.12) there), up to the replacement m !
m

t

=

p
m

2
+ ~p

2
t

. Please note that we have defined R?
and R|| in the PRF, while [17] defined these parameters in
the YKP frame [28, 38–40] which is o↵set by a transverse
boost compared to the PRF.

Mrowczynski discussed the connection between coales-
cence and two-particle correlations in a series of papers [14,
29–33]. This program resulted in a QM sum rule of the
neutron-proton correlation function, that was proposed to
give the D coalescence factor as a q-integral on the cor-
relation function [33]. The power of this idea was in that
there was no need to correct the measured correlation func-
tion for long- or short-range final state interactions: the
sum rule should apply directly to the observable correlation.
In practice, this suggestion fails, apparently because the q-
integral proposed in [33] receives contributions from large-q
regions in the integration.

In comparison to the sum rule of [32, 33], Eq. (24) is
less ambitious. The correlation function entering Eq. (24)
does need to be corrected for final state interactions, be-
cause it assumes a kinetic picture where an HXS density
matrix can be defined and projected into propagating par-
ticles. Eq. (24) also invokes assumptions such as isospin
symmetry and smoothness for the HXS freezeout surface.
In return, however, the RHS of Eq. (24) receives no contri-
butions from large-q modes because D(~q) in the integrand
constrains the support to the small q region, |~q| . 0.1m.

A QM derivation of the coalescence factor using a spe-
cific one-dimensional Gaussian source model was given in
Ref. [19]. This derivation agrees with Eq. (28) up to the
replacement m ! p

0
= m�

d

.

IV. REAL-LIFE COMPLICATIONS, A > 2 CLUSTERS,
AND COMPARING TO DATA

Eq. (24) is idealistic. In practice we cannot pull out a di-
rectly measured correlation function C2, plug into Eq. (24)
and calculate B2. Two main complications, preventing di-
rect implementation of Eq. (24), are: (i) Long-lived reso-
nances, decaying outside of the freeze-out surface of the
HXS, distort the correlations. (ii) Long-range Coulomb and
short-range strong nuclear FSI cause the two-particle wave
function to di↵er from the plane-wave form. For proton
pairs, FSI actually dominate the correlation function, mean-
ing that the QM statistics contribution must be extracted
indirectly as a sub-leading contribution to the actual observ-
able C2. To make things more di�cult, di↵erent spin states
exhibit di↵erent short-range FSI.

We will not address the complications above in detail
in this paper, deferring such refinements to future work.
Instead, we build on femtoscopy data analyses that explicitly
treat items (i-ii). The price we pay is to introduce model-
dependence, that enters via an assumed simple analytic form
for the correlation function. Our procedure and results are
explained in the next sections.

A. The chaoticity parameter �

The GSM assumed in [17, 19, 28] predicts not only
the shape, but also the normalisation of C2: it predicts
CPRF
2 (~q ! 0) = 1. In reality, measurements show

CPRF
2 (~q ! 0) ! � < 1, where � is known as the chaoticity

(or intercept) parameter [41, 42]. In HBT analyses of pions,
� < 1 follows from the fact that a sizeable fraction of the
pions come from the decay of long-lived resonances, leading
to a non-Gaussian contribution to C2 that is concentrated
at very small |~q| and cannot be resolved experimentally [41].
In HBT analyses of proton pairs, hyperons are the resonant
contamination [11, 43, 44]. Since strong FSI between p⇤

and pp are crucial in shaping the p⇤ and pp correlation
functions, studies [9, 11, 43, 44] separate the p⇤ ! pp and
genuine pp contributions entering the observed pp correla-
tion into di↵erent terms, that are fit in a combined analysis.
In [9, 11], separate chaoticity parameters �

pp

, �

p⇤ were as-
signed to the genuine pp pairs and the pairs coming from
p⇤ ! pp. The value of � defined in this way could reflect
intrinsic departures of the source functions from Gaussianity.
In Ref. [28] (and many other analyses in the literature),

� was introduced as a free parameter. Thus, it did not
enter into the coalescence-HBT correspondence of Ref. [17].
However, Eq. (24) shows that B2 is directly proportional to a
q-moment of CPRF

2 . If we adopt the Gaussian form together
with the � modification as an empirical description of C2,

CPRF
2 = � e

�R

2
?~q

2
?�R||~q

2
l
, (GSM, chaoticity �)

(29)

then B2 should match Eq. (28) simply multiplied by the
experimentally deduced value of �:
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B. A � 2

Eq. (24) can be generalised to clusters with A � 2. As-
suming an (A � 1)-dimensional symmetric Gaussian form
for the cluster’s relative coordinate wave function, and as-
suming that the A-particle correlation function can be de-
composed as a product of 2-particle Gaussian correlators
described by the same HBT radii R? and R|| and chaotic-
ity �, then the analogue of Eq. (30) is:

B
A

m

2(A�1)
= �

A
2
2J

A

+ 1

2

A

p
A

⇥
2

64
(2⇡)

3
2

m

3
⇣
R

2
? +

�
dA
2

�2⌘q
R

2
|| +

�
dA
2

�2

3

75

A�1

.

(31)

Gaussian source; chaoticity λ



4

done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �

d

R
d

3
Rf

d

!
(1/2m)

R ⇥
d

3
�

µ

P

µ

d

⇤
f

d

, where d

3
�

µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor
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d

/2 and where p
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is the unpolarised proton
yield. The two-particle correlation function is constructed
as
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G
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2

C2(P, q). (20)

By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have

CPRF
2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that
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Assuming unpolarised isospin-symmetric HXS [36] we have
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Using these conventions and noting that �1 ⇡ �2 ⇡ �

d

for
small |~q| ⌧ m, we are finally led to the result:

B2(p) ⇡ 3
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Z
d

3
qD(~q) CPRF

2 (~p, ~q) . (24)

Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P

2
d

= 4p

2 ⇡ (2m)

2. Thus, there will
actually be no on-shell proton pairs that satisfy p

2
1 = p

2
2 =

m

2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q

2
/m

2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~

P

d

/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,

�

d
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2d2

(⇡d

2
)

3
4

(25)

with d = 3.2 fm. This leads to
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4
. (26)

For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by

CPRF
2 = e

�R

2
?~q

2
?�R

2
||~q

2
l
, (GSM) (27)

where ~q

l

is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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This reproduces Eq. (1) and the main result of [17] (see
Eqs. (6.3) and (4.12) there), up to the replacement m !
m

t

=

p
m

2
+ ~p

2
t

. Please note that we have defined R?
and R|| in the PRF, while [17] defined these parameters in
the YKP frame [28, 38–40] which is o↵set by a transverse
boost compared to the PRF.

Mrowczynski discussed the connection between coales-
cence and two-particle correlations in a series of papers [14,
29–33]. This program resulted in a QM sum rule of the
neutron-proton correlation function, that was proposed to
give the D coalescence factor as a q-integral on the cor-
relation function [33]. The power of this idea was in that
there was no need to correct the measured correlation func-
tion for long- or short-range final state interactions: the
sum rule should apply directly to the observable correlation.
In practice, this suggestion fails, apparently because the q-
integral proposed in [33] receives contributions from large-q
regions in the integration.

In comparison to the sum rule of [32, 33], Eq. (24) is
less ambitious. The correlation function entering Eq. (24)
does need to be corrected for final state interactions, be-
cause it assumes a kinetic picture where an HXS density
matrix can be defined and projected into propagating par-
ticles. Eq. (24) also invokes assumptions such as isospin
symmetry and smoothness for the HXS freezeout surface.
In return, however, the RHS of Eq. (24) receives no contri-
butions from large-q modes because D(~q) in the integrand
constrains the support to the small q region, |~q| . 0.1m.

A QM derivation of the coalescence factor using a spe-
cific one-dimensional Gaussian source model was given in
Ref. [19]. This derivation agrees with Eq. (28) up to the
replacement m ! p

0
= m�

d

.

IV. REAL-LIFE COMPLICATIONS, A > 2 CLUSTERS,
AND COMPARING TO DATA

Eq. (24) is idealistic. In practice we cannot pull out a di-
rectly measured correlation function C2, plug into Eq. (24)
and calculate B2. Two main complications, preventing di-
rect implementation of Eq. (24), are: (i) Long-lived reso-
nances, decaying outside of the freeze-out surface of the
HXS, distort the correlations. (ii) Long-range Coulomb and
short-range strong nuclear FSI cause the two-particle wave
function to di↵er from the plane-wave form. For proton
pairs, FSI actually dominate the correlation function, mean-
ing that the QM statistics contribution must be extracted
indirectly as a sub-leading contribution to the actual observ-
able C2. To make things more di�cult, di↵erent spin states
exhibit di↵erent short-range FSI.

We will not address the complications above in detail
in this paper, deferring such refinements to future work.
Instead, we build on femtoscopy data analyses that explicitly
treat items (i-ii). The price we pay is to introduce model-
dependence, that enters via an assumed simple analytic form
for the correlation function. Our procedure and results are
explained in the next sections.

A. The chaoticity parameter �

The GSM assumed in [17, 19, 28] predicts not only
the shape, but also the normalisation of C2: it predicts
CPRF
2 (~q ! 0) = 1. In reality, measurements show

CPRF
2 (~q ! 0) ! � < 1, where � is known as the chaoticity

(or intercept) parameter [41, 42]. In HBT analyses of pions,
� < 1 follows from the fact that a sizeable fraction of the
pions come from the decay of long-lived resonances, leading
to a non-Gaussian contribution to C2 that is concentrated
at very small |~q| and cannot be resolved experimentally [41].
In HBT analyses of proton pairs, hyperons are the resonant
contamination [11, 43, 44]. Since strong FSI between p⇤

and pp are crucial in shaping the p⇤ and pp correlation
functions, studies [9, 11, 43, 44] separate the p⇤ ! pp and
genuine pp contributions entering the observed pp correla-
tion into di↵erent terms, that are fit in a combined analysis.
In [9, 11], separate chaoticity parameters �

pp

, �

p⇤ were as-
signed to the genuine pp pairs and the pairs coming from
p⇤ ! pp. The value of � defined in this way could reflect
intrinsic departures of the source functions from Gaussianity.
In Ref. [28] (and many other analyses in the literature),

� was introduced as a free parameter. Thus, it did not
enter into the coalescence-HBT correspondence of Ref. [17].
However, Eq. (24) shows that B2 is directly proportional to a
q-moment of CPRF

2 . If we adopt the Gaussian form together
with the � modification as an empirical description of C2,

CPRF
2 = � e

�R

2
?~q

2
?�R||~q

2
l
, (GSM, chaoticity �)

(29)

then B2 should match Eq. (28) simply multiplied by the
experimentally deduced value of �:
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d

2
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d

2
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(30)

B. A � 2

Eq. (24) can be generalised to clusters with A � 2. As-
suming an (A � 1)-dimensional symmetric Gaussian form
for the cluster’s relative coordinate wave function, and as-
suming that the A-particle correlation function can be de-
composed as a product of 2-particle Gaussian correlators
described by the same HBT radii R? and R|| and chaotic-
ity �, then the analogue of Eq. (30) is:
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cence and two-particle correlations in a series of papers [14,
29–33]. This program resulted in a QM sum rule of the
neutron-proton correlation function, that was proposed to
give the D coalescence factor as a q-integral on the cor-
relation function [33]. The power of this idea was in that
there was no need to correct the measured correlation func-
tion for long- or short-range final state interactions: the
sum rule should apply directly to the observable correlation.
In practice, this suggestion fails, apparently because the q-
integral proposed in [33] receives contributions from large-q
regions in the integration.

In comparison to the sum rule of [32, 33], Eq. (24) is
less ambitious. The correlation function entering Eq. (24)
does need to be corrected for final state interactions, be-
cause it assumes a kinetic picture where an HXS density
matrix can be defined and projected into propagating par-
ticles. Eq. (24) also invokes assumptions such as isospin
symmetry and smoothness for the HXS freezeout surface.
In return, however, the RHS of Eq. (24) receives no contri-
butions from large-q modes because D(~q) in the integrand
constrains the support to the small q region, |~q| . 0.1m.

A QM derivation of the coalescence factor using a spe-
cific one-dimensional Gaussian source model was given in
Ref. [19]. This derivation agrees with Eq. (28) up to the
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Eq. (24) is idealistic. In practice we cannot pull out a di-
rectly measured correlation function C2, plug into Eq. (24)
and calculate B2. Two main complications, preventing di-
rect implementation of Eq. (24), are: (i) Long-lived reso-
nances, decaying outside of the freeze-out surface of the
HXS, distort the correlations. (ii) Long-range Coulomb and
short-range strong nuclear FSI cause the two-particle wave
function to di↵er from the plane-wave form. For proton
pairs, FSI actually dominate the correlation function, mean-
ing that the QM statistics contribution must be extracted
indirectly as a sub-leading contribution to the actual observ-
able C2. To make things more di�cult, di↵erent spin states
exhibit di↵erent short-range FSI.

We will not address the complications above in detail
in this paper, deferring such refinements to future work.
Instead, we build on femtoscopy data analyses that explicitly
treat items (i-ii). The price we pay is to introduce model-
dependence, that enters via an assumed simple analytic form
for the correlation function. Our procedure and results are
explained in the next sections.

A. The chaoticity parameter �

The GSM assumed in [17, 19, 28] predicts not only
the shape, but also the normalisation of C2: it predicts
CPRF
2 (~q ! 0) = 1. In reality, measurements show

CPRF
2 (~q ! 0) ! � < 1, where � is known as the chaoticity

(or intercept) parameter [41, 42]. In HBT analyses of pions,
� < 1 follows from the fact that a sizeable fraction of the
pions come from the decay of long-lived resonances, leading
to a non-Gaussian contribution to C2 that is concentrated
at very small |~q| and cannot be resolved experimentally [41].
In HBT analyses of proton pairs, hyperons are the resonant
contamination [11, 43, 44]. Since strong FSI between p⇤

and pp are crucial in shaping the p⇤ and pp correlation
functions, studies [9, 11, 43, 44] separate the p⇤ ! pp and
genuine pp contributions entering the observed pp correla-
tion into di↵erent terms, that are fit in a combined analysis.
In [9, 11], separate chaoticity parameters �
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p⇤ were as-
signed to the genuine pp pairs and the pairs coming from
p⇤ ! pp. The value of � defined in this way could reflect
intrinsic departures of the source functions from Gaussianity.
In Ref. [28] (and many other analyses in the literature),

� was introduced as a free parameter. Thus, it did not
enter into the coalescence-HBT correspondence of Ref. [17].
However, Eq. (24) shows that B2 is directly proportional to a
q-moment of CPRF

2 . If we adopt the Gaussian form together
with the � modification as an empirical description of C2,
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Eq. (24) can be generalised to clusters with A � 2. As-
suming an (A � 1)-dimensional symmetric Gaussian form
for the cluster’s relative coordinate wave function, and as-
suming that the A-particle correlation function can be de-
composed as a product of 2-particle Gaussian correlators
described by the same HBT radii R? and R|| and chaotic-
ity �, then the analogue of Eq. (30) is:
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done in Ref. [17], which used the Cooper-Frye pre-
scription [27] to make the replacement �

d

R
d

3
Rf

d

!
(1/2m)

R ⇥
d

3
�

µ

P

µ

d

⇤
f

d

, where d

3
�

µ is the volume element
perpendicular to the HXS relativistic freeze-out surface.

While Ref. [17] (which focused on D formation) arrived at
this procedure directly from Eq. (10), the same implementa-
tion of freeze-out w.r.t. the integration over centre of mass
coordinate ~

R can be used in integrating the coalescence-
correlation relation expressed by Eq. (16). There is no need
to specify the details of the freeze-out surface t

f

(

~

R) because
Eq. (16) relates the pair emissivity and the D emissivity per
di↵erential volume element d3R in the HXS. Having noted
this point, we can drop the di↵erential d3R in Eq. (16) and
consider it as a relation between total D and pair yields.

Let us now make contact with measurements. Experi-
mental collaborations report the (Lorentz-invariant) coales-
cence factor
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with p = P

d

/2 and where p
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is the unpolarised proton
yield. The two-particle correlation function is constructed
as
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The numerator on the RHS of Eq. (19) sums together the
di↵erent spin states of the proton pair. In the denominator,
the unpolarised di↵erential yields at p1 and p2 are obtained
by scrambling between proton pairs from di↵erent events.

Still provisionally neglecting FSI and other complications
(which would be discussed later), Ref. [9] parametrised two-
proton correlation measurements in a way that can be put
as

C2(P, q) = 1� G
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By examining the q dependence we see that the C2 term
in Eq. (20) comes from the F2 term in Eq. (14), while the
1 comes from the A2 term there. More precisely, in the
non-relativistic limit we have
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2 (|~q| ⌧ m) =

F2

A2
, (21)

where the superscript PRF instructs us that q in CPRF
2 is

defined in the pair centre of mass frame. In the same limit,
Eqs. (16) and (18) show that
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Assuming unpolarised isospin-symmetric HXS [36] we have
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Using these conventions and noting that �1 ⇡ �2 ⇡ �
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small |~q| ⌧ m, we are finally led to the result:
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Following the discussion around Eq. (16), this result is not
limited to non-relativistic p. It is limited to non-relativistic
|~q|2 ⌧ m

2, but that is not a real concern because both C2
and D cut-o↵ at |~q| ⇠ 0.1m.
We comment that the coalescence factor B2(p) is defined

for on-shell D with P
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2. Thus, there will
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2 along with (p1 + p2)/2 = p at q 6= 0. This problem
comes from neglecting corrections of order ~q
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2 in the
derivation of Eq. (24). We can find on-shell proton pairs to
construct CPRF

2 by allowing the energy component P 0 of the
P 4-vector in Eq. (19) to deviate from p

0 of Eq. (18), while
at the same time enforcing ~

P =

~
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/2 = ~p. In other words,
we let p on the LHS of Eq. (24) denote the 4-momentum
per nucleon of the on-shell D, and we equate ~p between the
LHS and the RHS, but we do not enforce p0 on the RHS to
match p

0 on the LHS. Corrections due to this approximation
are of order ~q2/m2.

III. COMPARISON WITH PREVIOUS WORK

Scheibl & Heinz [17] used a Gaussian source model
(GSM) of the HXS 1-particle Wigner densities to calculate
coalescence and two-particle correlations (following [28] on
the latter), and expressed the coalescence factor in terms of
the HBT radius parameters computed in their model. To
obtain analytic expressions, the D wave function was taken
to be Gaussian,
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with d = 3.2 fm. This leads to
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For the HBT analysis, Ref. [17] used the parameters R?
and R|| in terms of which the correlation function in their
model is given by
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where ~q
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is the component of ~q parallel to the beam axis
and ~q? spans the transverse direction. Plugging these ex-
pressions for D and CPRF

2 in Eq. (24) we find6
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6 See also [16, 37].
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ing that the QM statistics contribution must be extracted
indirectly as a sub-leading contribution to the actual observ-
able C2. To make things more di�cult, di↵erent spin states
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dependence, that enters via an assumed simple analytic form
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and pp are crucial in shaping the p⇤ and pp correlation
functions, studies [9, 11, 43, 44] separate the p⇤ ! pp and
genuine pp contributions entering the observed pp correla-
tion into di↵erent terms, that are fit in a combined analysis.
In [9, 11], separate chaoticity parameters �

pp

, �

p⇤ were as-
signed to the genuine pp pairs and the pairs coming from
p⇤ ! pp. The value of � defined in this way could reflect
intrinsic departures of the source functions from Gaussianity.
In Ref. [28] (and many other analyses in the literature),

� was introduced as a free parameter. Thus, it did not
enter into the coalescence-HBT correspondence of Ref. [17].
However, Eq. (24) shows that B2 is directly proportional to a
q-moment of CPRF

2 . If we adopt the Gaussian form together
with the � modification as an empirical description of C2,
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then B2 should match Eq. (28) simply multiplied by the
experimentally deduced value of �:
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B. A � 2

Eq. (24) can be generalised to clusters with A � 2. As-
suming an (A � 1)-dimensional symmetric Gaussian form
for the cluster’s relative coordinate wave function, and as-
suming that the A-particle correlation function can be de-
composed as a product of 2-particle Gaussian correlators
described by the same HBT radii R? and R|| and chaotic-
ity �, then the analogue of Eq. (30) is:
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This reproduces Eq. (1) and the main result of [17] (see
Eqs. (6.3) and (4.12) there), up to the replacement m !
m

t

=

p
m

2
+ ~p

2
t

. Please note that we have defined R?
and R|| in the PRF, while [17] defined these parameters in
the YKP frame [28, 38–40] which is o↵set by a transverse
boost compared to the PRF.

Mrowczynski discussed the connection between coales-
cence and two-particle correlations in a series of papers [14,
29–33]. This program resulted in a QM sum rule of the
neutron-proton correlation function, that was proposed to
give the D coalescence factor as a q-integral on the cor-
relation function [33]. The power of this idea was in that
there was no need to correct the measured correlation func-
tion for long- or short-range final state interactions: the
sum rule should apply directly to the observable correlation.
In practice, this suggestion fails, apparently because the q-
integral proposed in [33] receives contributions from large-q
regions in the integration.

In comparison to the sum rule of [32, 33], Eq. (24) is
less ambitious. The correlation function entering Eq. (24)
does need to be corrected for final state interactions, be-
cause it assumes a kinetic picture where an HXS density
matrix can be defined and projected into propagating par-
ticles. Eq. (24) also invokes assumptions such as isospin
symmetry and smoothness for the HXS freezeout surface.
In return, however, the RHS of Eq. (24) receives no contri-
butions from large-q modes because D(~q) in the integrand
constrains the support to the small q region, |~q| . 0.1m.

A QM derivation of the coalescence factor using a spe-
cific one-dimensional Gaussian source model was given in
Ref. [19]. This derivation agrees with Eq. (28) up to the
replacement m ! p

0
= m�

d

.

IV. REAL-LIFE COMPLICATIONS, A > 2 CLUSTERS,
AND COMPARING TO DATA

Eq. (24) is idealistic. In practice we cannot pull out a di-
rectly measured correlation function C2, plug into Eq. (24)
and calculate B2. Two main complications, preventing di-
rect implementation of Eq. (24), are: (i) Long-lived reso-
nances, decaying outside of the freeze-out surface of the
HXS, distort the correlations. (ii) Long-range Coulomb and
short-range strong nuclear FSI cause the two-particle wave
function to di↵er from the plane-wave form. For proton
pairs, FSI actually dominate the correlation function, mean-
ing that the QM statistics contribution must be extracted
indirectly as a sub-leading contribution to the actual observ-
able C2. To make things more di�cult, di↵erent spin states
exhibit di↵erent short-range FSI.

We will not address the complications above in detail
in this paper, deferring such refinements to future work.
Instead, we build on femtoscopy data analyses that explicitly
treat items (i-ii). The price we pay is to introduce model-
dependence, that enters via an assumed simple analytic form
for the correlation function. Our procedure and results are
explained in the next sections.

A. The chaoticity parameter �

The GSM assumed in [17, 19, 28] predicts not only
the shape, but also the normalisation of C2: it predicts
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2 (~q ! 0) = 1. In reality, measurements show
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to a non-Gaussian contribution to C2 that is concentrated
at very small |~q| and cannot be resolved experimentally [41].
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genuine pp contributions entering the observed pp correla-
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signed to the genuine pp pairs and the pairs coming from
p⇤ ! pp. The value of � defined in this way could reflect
intrinsic departures of the source functions from Gaussianity.
In Ref. [28] (and many other analyses in the literature),

� was introduced as a free parameter. Thus, it did not
enter into the coalescence-HBT correspondence of Ref. [17].
However, Eq. (24) shows that B2 is directly proportional to a
q-moment of CPRF
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B. A � 2

Eq. (24) can be generalised to clusters with A � 2. As-
suming an (A � 1)-dimensional symmetric Gaussian form
for the cluster’s relative coordinate wave function, and as-
suming that the A-particle correlation function can be de-
composed as a product of 2-particle Gaussian correlators
described by the same HBT radii R? and R|| and chaotic-
ity �, then the analogue of Eq. (30) is:
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This reproduces Eq. (1) and the main result of [17] (see
Eqs. (6.3) and (4.12) there), up to the replacement m !
m

t

=

p
m

2
+ ~p

2
t

. Please note that we have defined R?
and R|| in the PRF, while [17] defined these parameters in
the YKP frame [28, 38–40] which is o↵set by a transverse
boost compared to the PRF.

Mrowczynski discussed the connection between coales-
cence and two-particle correlations in a series of papers [14,
29–33]. This program resulted in a QM sum rule of the
neutron-proton correlation function, that was proposed to
give the D coalescence factor as a q-integral on the cor-
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sum rule should apply directly to the observable correlation.
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integral proposed in [33] receives contributions from large-q
regions in the integration.

In comparison to the sum rule of [32, 33], Eq. (24) is
less ambitious. The correlation function entering Eq. (24)
does need to be corrected for final state interactions, be-
cause it assumes a kinetic picture where an HXS density
matrix can be defined and projected into propagating par-
ticles. Eq. (24) also invokes assumptions such as isospin
symmetry and smoothness for the HXS freezeout surface.
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butions from large-q modes because D(~q) in the integrand
constrains the support to the small q region, |~q| . 0.1m.

A QM derivation of the coalescence factor using a spe-
cific one-dimensional Gaussian source model was given in
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nances, decaying outside of the freeze-out surface of the
HXS, distort the correlations. (ii) Long-range Coulomb and
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function to di↵er from the plane-wave form. For proton
pairs, FSI actually dominate the correlation function, mean-
ing that the QM statistics contribution must be extracted
indirectly as a sub-leading contribution to the actual observ-
able C2. To make things more di�cult, di↵erent spin states
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in this paper, deferring such refinements to future work.
Instead, we build on femtoscopy data analyses that explicitly
treat items (i-ii). The price we pay is to introduce model-
dependence, that enters via an assumed simple analytic form
for the correlation function. Our procedure and results are
explained in the next sections.

A. The chaoticity parameter �

The GSM assumed in [17, 19, 28] predicts not only
the shape, but also the normalisation of C2: it predicts
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2 (~q ! 0) = 1. In reality, measurements show
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2 (~q ! 0) ! � < 1, where � is known as the chaoticity

(or intercept) parameter [41, 42]. In HBT analyses of pions,
� < 1 follows from the fact that a sizeable fraction of the
pions come from the decay of long-lived resonances, leading
to a non-Gaussian contribution to C2 that is concentrated
at very small |~q| and cannot be resolved experimentally [41].
In HBT analyses of proton pairs, hyperons are the resonant
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functions, studies [9, 11, 43, 44] separate the p⇤ ! pp and
genuine pp contributions entering the observed pp correla-
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In [9, 11], separate chaoticity parameters �

pp

, �

p⇤ were as-
signed to the genuine pp pairs and the pairs coming from
p⇤ ! pp. The value of � defined in this way could reflect
intrinsic departures of the source functions from Gaussianity.
In Ref. [28] (and many other analyses in the literature),

� was introduced as a free parameter. Thus, it did not
enter into the coalescence-HBT correspondence of Ref. [17].
However, Eq. (24) shows that B2 is directly proportional to a
q-moment of CPRF

2 . If we adopt the Gaussian form together
with the � modification as an empirical description of C2,

CPRF
2 = � e

�R

2
?~q

2
?�R||~q

2
l
, (GSM, chaoticity �)

(29)

then B2 should match Eq. (28) simply multiplied by the
experimentally deduced value of �:

B2 =

3⇡

3
2
�

2m

⇣
R

2
? +

�
d

2

�2⌘q
R

2
|| +

�
d

2

�2 , (GSM, chaoticity �).

(30)

B. A � 2

Eq. (24) can be generalised to clusters with A � 2. As-
suming an (A � 1)-dimensional symmetric Gaussian form
for the cluster’s relative coordinate wave function, and as-
suming that the A-particle correlation function can be de-
composed as a product of 2-particle Gaussian correlators
described by the same HBT radii R? and R|| and chaotic-
ity �, then the analogue of Eq. (30) is:
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We derive a simple formula relating the cross section for light cluster production (defined via a co-
alescence factor) to the two-proton correlation function measured in heavy-ion collisions. The formula
generalises earlier coalescence-correlation relations found by Scheibl & Heinz and by Mrowczynski for
Gaussian source models. It motivates joint experimental analyses of Hanbury Brown-Twiss (HBT) and
cluster yield measurements in existing and future data sets.

I. INTRODUCTION

The Large Hadron Collider (LHC) made available a di-
verse data set of production cross sections of light nu-
clear clusters like deuterons (D), helions (3He) and tritons
(3H) [1, 2]. The LHC also brought progress in femtoscopy,
the study of the momentum-space correlations of particles
emitted in hadronic collisions1 [5–12]. These measurements
are a source of information on the state produced in heavy-
ion collisions [13–21]. A review of future prospects can be
found in [22].

In this paper we consider an interesting feature in the
data [23]: the anti-correlation between the source homoge-
niety volume, probed in femtoscopy, and the coalescence
factor of nuclear clusters. This correlation was predicted
two decades ago in a seminal work by Scheibl & Heinz [17].
For a cluster with mass number A and spin J

A

, observed
at vanishing transverse momentum p

t

= 0 in the collider
frame, it is summarised by the relation [20, 23]23:
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Here, the coalescence factor is defined as B
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p is the Lorentz-

invariant di↵erential yield for constituent nucleons at p =

P

A

/A. The homogeniety volume is parametrised by the
HBT radius R [5–12]4. m ⇡ 0.94 GeV is the nucleon mass.

Eq. (1) was predicted to apply in the limit that the size pa-
rameter d

A

of the cluster’s wave function can be neglected
compared to the source homogeniety radius: d

A

⌧ R. For
small systems with R . d

A

, Eq. (1) receives a correction
via R

2 ! R

2
+ (d

A

/2)

2. At finite p

t

, Ref. [17] suggested
that Eq. (1) should be modified by m ! m
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p
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2
t

.

⇤Electronic address: kfir.blum@cern.ch
1 Also known as Hanbury Brown-Twiss (HBT) [3, 4] analyses.
2 See also [16].
3 See, e.g. [24–26] for the appearance of a similar formula within a
thermodynamic model.

4 More practical details about the definition of R are given in Sec. IV.

A comparison of Eq. (1) to LHC data was presented in
Ref. [23], which used it to extrapolate measurements in Pb-
Pb collisions into a prediction of the coalescence factor of
D, 3He and 3H in p-p collisions. This extrapolation is non-
trivial. The HBT radius characterising Pb-Pb collisions is
R ⇠ 4 fm, compared to R ⇠ 1 fm measured in p-p colli-
sions. Thus, Eq. (1) predicts a large increase in B

A

going
from Pb-Pb to p-p: Bp�p

3 /BPb�Pb
3 ⇠ 4⇥ 10

3. Subsequent
ALICE measurements [2] in p-p collisions were consistent
with this prediction: Eq. (1) appears to work, at least to
O(1) accuracy, over orders of magnitude in B

A

. The ques-
tion we ask (and answer) in this study is, why does it work?
To substantiate this question, note that Ref. [17] derived

Eq. (1) using a number of assumptions and approximations.
A simple source model was used to describe the emission of
particles produced in hadronic collisions. This model imple-
mented collective flow with a specific velocity profile and a
Gaussian density profile, limited to radial symmetry in the
transverse direction. Using a saddle point approximation
to evaluate Cooper-Frye integrals [27], Ref. [17] compared
their analytic results to a parallel analysis that used the same
assumptions to calculate HBT parameters [28], and found
Eq. (1).
Given this procedure, it is natural to question the theo-

retical basis for Eq. (1). For example, as noted in [17], it is
unlikely that the source model adopted there can actually
describe systems ranging from Pb-Pb to p-p in detail. Why
then does Eq. (1) work? can we expect it to remain valid
at p

t

> 0; at intermediate centrality; and so on?
The outline of our analysis and main results is as follows.

In Sec. II we focus on D formation (Sec. II A) and two-proton
correlations (Sec. II B). Using non-relativistic quantum me-
chanics (QM) considerations, in idealistic settings ignoring
final-state interactions and other real-life complications, we
derive a relation between D formation and two-particle spec-
tra. In Sec. II C we extend our results to a relativistic for-
mulation. Our main result is Eq. (24), giving B2 as an
integral of the two-particle correlation function weighted by
the D probability density. The derivation does not require a
detailed model of the particle emission source. In particu-
lar, we need not invoke the assumptions and approximations
of [17, 28]. Another derivation is shown in App. A.
In Sec. III we show that adopting the same assumptions
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In recent years, space-born experiments have delivered new measurements of high
energy cosmic-ray (CR) p̄ and e

+. In addition, unprecedented sensitivity to CR com-
posite anti-nuclei d̄ and 3He is expected to be achieved in the near future. We report
on the theoretical interpretation of these measurements. While CR antimatter is
a promising discovery tool for new physics or exotic astrophysical phenomena, an
irreducible background arises from secondary production by primary CR collisions
with ambient interstellar matter. Understanding this irreducible background or con-
straining it from first principles is an interesting challenge. We review the attempt
to obtain such understanding and apply it to CR p̄, e

+
, d̄, and 3He.

We show that: (i) CR p̄ most likely come from CR-gas collisions; (ii) e

+ data
is consistent with, and suggestive of the same astrophysical production mechanism
responsible for p̄ and dominated by proton-proton collisions; (iii) the same processes
produce a flux of high energy 3He that may be observable with a few years exposure
of the AMS-02 experiment. We highlight key open questions, as well as the role
played by recent and upcoming space and accelerator data in clarifying the origins
of CR antimatter.
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2 anti-He4 candidates, 
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2. the bulk of the spallation episode must not have occurred more than a few Myr in the
past.

F. Models for secondary e+

G. Models for primary e+

IV. COMPOSITE ANTI-NUCLEI: d̄ AND 3He

Composite CR anti-deuterium (d̄) and anti-helium (3He) have long been suggested as
probes of dark matter [73–83], as their secondary astrophysical production was thought to
be negligible [84–88]. These references, and references to and within them, cover exten-
sively the exciting possibility that dark matter annihilation or even primordial black hole
evaporation could in principle produce a detectable flux of d̄ and/or 3He in current and
upcoming experiments such as GAPS [23], BESS [24, 25], and AMS02 [20, 21]. Therefore,
in the current review we do not enter further discussion of hypothetical exotic sources.

However, exotic sources aside, how does one actually predict the irreducible secondary
flux?

Using our tools from Sec. II, CR propagation is not a serious di�culty when it comes to
stable, relativistic, secondary nuclei – and antinuclei, like p̄, d̄ and 3He. The challenge for
CR d̄ and 3He is set instead by inadequate particle physics data. Astrophysical anti-nuclei
are dominantly produced in pp collisions, for which relevant cross section data is scarce
when it exists at all. This has led attempts to calculate the flux of d̄ and 3He into various
extrapolations, resulting with large and di�cult to quantify systematic uncertainty.

A compilation of predictions of the secondary d̄ and 3He fluxes from the literature is
shown in Fig. 11 (left and right panels, respectively). To date no detection of either d̄ or
3He was o�cially announced by any experiment, although news of possible detection were
reported by AMS02 in 2016.

A recent attempt at tackling the cross section problem in pp ! d̄, 3He production was
done in [34], which used a new technique burrowed from heavy ion femtoscopy [89, 90]. The
3He flux predicted in [34], shown by green band in the right panel of Fig. 11, is 1-2 orders
of magnitude higher than most earlier estimates [84–88].

The secondary 3He flux could reach the 5-yr 95%CL upper limit estimated for AMS02
prior to its launch [21].

Perhaps more important than the actual flux prediction, Ref. [34] scrutinised pre-
vious calculations of secondary d̄ and 3He and highlighted extrapolations and possible
sources of systematic uncertainties. In the rest of this section we outline this discussion.
We show that LHC experiments are expected to shed light on these issues in the near future.

A coalescence ansatz [91–93] is often invoked to relate the formation of composite nucleus
product with mass number A to the formation cross section of the nucleon constituents:
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, (32)

where dNi = d�i/� is the di↵erential yield, � is the total inelastic cross section, and the
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For pp we had no B3, but we did have HBT
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For pp we had no B3  until Sep 26, 2017
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Implications of ALICE results 
for astrophysics: 

1 anti-He3 at AMS02,  
in 5-year exposure: plausible. 

6 anti-He3 events: not plausible.
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antimatter is produced in collisions of the bulk of the CRs 
— protons and He – with interstellar gas. 

Need to calculate this background to learn about possible exotic sources. 

Problem: we don’t know where CRs come from, nor how long they are trapped 
in the Galaxy, nor how they eventually escape. 

This problem is often under-stated…
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antimatter is produced in collisions of the bulk of the CRs 
— protons and He – with interstellar gas. 

For stable, relativistic secondary CR nuclei,  
we have a handle: branching fractions 

3

In Sec. III we turn to e

+, a hot potato: here public opinion basically has it that a primary
source of e+ must exist, be it dark matter or pulsars. We take a fresh look at the data in
Sec. IIIA; the first thing we notice appears like a hint in the opposite direction: CR e

+

may in fact be consistent with secondary. An actual puzzle with e

+ is there, but is perhaps
more subtle than commonly appreciated. We devote Sec. III B-III C to elucidate the e

+

puzzle. We do not know the solution, but we show in Sec. IIID that high energy radioactive
nuclei data, expected in the near future, may rule the secondary e

+ hypothesis in or out. In
Sec. III E we provisionally assume that e+ are secondary to review some general constraints
on CR propagation. In Sec. III F we review models suggested in the literature wherein e

+

are secondary, and explain why we like some of them more than others. In Sec. IIIG we
review models suggested in the literature wherein e

+ are from a primary source, notably
dark matter annihilation or pulsars, and explain why we like some of them less than others.

In Sec. IV we tackle the topic of CR d̄ and 3He. Surprisingly enough, we find a hot potato
also here: we suggest, contrary to most earlier estimates, that a detection of secondary 3He
may be imminent at AMS02 (consistent with some pesky recent rumours).

In Sec. V we conclude.

II. ASTROPHYSICAL p̄: THE GALAXY AS A FIXED-TARGET EXPERIMENT

CR antimatter particles are produced as secondaries in collisions of other CRs, notably
protons, with interstellar matter (ISM), notably hydrogen in the Galaxy. Highly relativistic
p̄ and heavier antinuclei (d̄, 3He) propagate similarly to relativistic matter nuclei at the same
magnetic rigidity

R = p/eZ,

with the di↵erence in charge sign expected to make little or no impact on the propagation
given that the measured CR flux is very nearly locally isotropic.

Starting with the simplest case of p̄, it is natural to try and calibrate the e↵ect of prop-
agation directly from data, by using information on other secondary nuclei like boron (B),
formed by fragmentation of heavier CRs (mostly carbon C and oxygen O). We now explain
how to perform this calibration, calculate the predicted p̄ flux, and compare to measure-
ments.

A. The CR grammage

In this section we limit the discussion to stable, relativistic, secondary nuclei. For such
secondaries, including e.g. B and the sub-Fe group (T-Sc-V-Cr), the ratio of densities of two
specie a, b satisfies an approximate empirical relation [26, 27],

na(R)

nb(R)
⇡ Qa(R)

Qb(R)
. (1)

Here Qa denotes the net production of species a per unit ISM column density,

Qa(R) =
X

P

nP (R)
�P!a(R)

m

� na(R)
�a(R)

m

, (2)
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where (�a/m) and (�P!a/m) are the total inelastic and the partial P ! a cross section per
target ISM particle mass m, respectively.

We stress that Eq. (1) is an empirical relation, known to apply to ⇠10% accuracy in
analyses of HEAO3 data [26, 27] and – as we shall see shortly, focusing on p̄ – consistent
with subsequent PAMELA [10] and AMS02 [16] measurements.

From the theoretical point of view, Eq. (1) is natural [2, 28–30]. It is guaranteed to
apply if the relative composition of the CRs in the regions that dominate the spallation is
similar to that measured locally at the solar system3: in this case, the source distribution of
di↵erent secondaries is similar. Because the confinement of CRs in the Galaxy is magnetic,
di↵erent CR particles that share a common distribution of sources should exhibit similar
propagation if sampled at the same rigidity4. Thus, the ratio of propagated CR densities
reflects the ratio of their net production rates.

Note that the net source defined in Eq. (2) accounts for the fact that di↵erent nuclei
exhibit di↵erent degree of fragmentation losses during propagation. In this way, specie like
sub-Fe (with fragmentation loss cross section of order 500 mb), B (�B ⇠ 240 mb), and p̄

(�p̄ ⇠ 40 mb) can be put on equal footing.
Further discussion of the physical significance of Eq. (1) is given in Ref. [28] and App. A.

We can use Eq. (1) together with the locally measured flux of B, C, O, p, He,... to predict
the p̄ flux [28, 32]:

np̄(R) ⇡ nB(R)

QB(R)
Qp̄(R). (3)

The RHS of Eq. (3) is derived from laboratory cross section data and from direct local
measurements of CR densities, without reference to the details of propagation.

In applying Eq. (1) to p̄, a subtlety arises due to the fact that the cross sections appearing
in Eq. (2) can (and for p̄, do) depend on energy. In Eq. (2) we define these cross sections
such that the source term Qa(R) is proportional to the progenitor species density nP (R)
expressed at the same rigidity (we will clarify this statement down the road in Eq. (6)).
For relativistic nuclei (above a few GeV/nuc) produced in fragmentation reactions, e.g. 12C
fragmenting to 11B, the energy dependence of the fragmentation cross section is much less im-
portant. Therefore, before proceeding to calculate Qp̄, we consider the factor nB(R)/QB(R).

The quantity

Xesc(R) =
nB(R)

QB(R)
, (4)

known as the CR grammage [2] (see App. A), is a spallation-weighted average of the column
density of ISM traversed by CRs during their propagation, the average being taken over

3 Note: neither the over-all CR intensity, nor the target ISM density, needs to be uniform in the propagation

region in order for Eq. (1) to apply. Indeed, the ISM exhibits orders of magnitude variations in density

across the Galactic gas disc and rarified halo [31].
4 This is, of course, provided that the CR specie being compared do not exhibit species-dependent com-

plications like decay in flight (for radionuclei like 10Be) or radiative energy losses (for e+). In addition,

rigidity only really becomes the magic quantity for propagation at relativistic energies (see e.g. [27]).

Apply this to antiprotons


