Onset of binding AA **Hypernuclei** EMMI: Exotica, Wroclaw, Dec. 2019 Avraham Gal, Hebrew University, Jerusalem

- Introduction to ΛΛ hypernuclei
 Clearly identified species: ⁶_{ΛΛ}He, ¹⁰_{ΛΛ}Be, ¹³_{ΛΛ}B.
 Lighter ΛΛ hypernuclei?
- *#*EFT of light ΛΛ hypernuclei
 s-shell hypernuclei: overbinding of ⁵/_ΛHe
 Contessi-Barnea-Gal, PRL 121 (2018) 102502.
 The onset of ΛΛ hypernuclear binding
 - + Schäfer & Mareš, PLB 797 (2019) 134893.

Introduction to $\Lambda\Lambda$ Hypernuclei

Nagara event, ${}_{\Lambda\Lambda}{}^{6}$ He, (KEK-E373) PRL 87 (2001) 212502 $B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}$ He_{g.s.})=6.91±0.16 MeV, unambiguously determined.

- A: Ξ^- capture $\Xi^- + {}^{12}C \rightarrow {}^{6}_{\Lambda\Lambda}He + t + \alpha$
- B: weak decay ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}_{\Lambda}{}^{5}\text{He} + p + \pi^{-}$ (no ${}_{\Lambda\Lambda}{}^{6}\text{He} \rightarrow {}^{4}\text{He} + H$)
- C: ${}_{\Lambda}^{5}$ He nonmesic weak decay to 2 Z=1 recoils + n.

The elusive H dibaryon Jaffe's H(uuddss) [PRL 38 (1977) 195] predicted stable $H \sim \mathcal{A}[\sqrt{1/8} \Lambda\Lambda + \sqrt{1/2} N\Xi - \sqrt{3/8} \Sigma\Sigma,]_{I=S=0}$

- To forbid ${}^{6}_{\Lambda\Lambda}$ He \rightarrow H+⁴He, impose B(H) \leq 7 MeV. A bound H most likely overbinds ${}^{6}_{\Lambda\Lambda}$ He [Gal, PRL 110 (2013) 179201].
- LQCD: a weakly bound H becomes unbound.
 SU(3)_f breaking pushes it to ≈NΞ threshold,
 ≈26 MeV in ΛΛ continuum [HALQCD, NPA 881
 (2012) 28; Haidenbauer & Meißner, ibid. 44].
- Search for m(H) \leq 2.05 GeV by BaBar in $\Upsilon(2S,3S) \rightarrow H\overline{\Lambda}\overline{\Lambda}$ is negative [PRL 122 (2019) 072002].

Binding	energy	y consistency	y of AA hyp	oernuclei
event	${}^{A}_{\Lambda\Lambda}Z$	$B^{ m exp}_{\Lambda\Lambda}$	$B^{ m CM}_{\Lambda\Lambda}$ †	$B^{ m SM}_{\Lambda\Lambda}$ ††
E373-Nagara	$^{6}_{\Lambda\Lambda}{ m He}$	6.91 ± 0.16	6.91 ± 0.16	6.91 ± 0.16
E373-DemYan	$^{10}_{\Lambda\Lambda}{ m Be}$	$14.94 \pm 0.13 \ddagger$	14.74 ± 0.16	14.97 ± 0.22
E373-Hida	$^{11}_{\Lambda\Lambda}{ m Be}$	20.83 ± 1.27	18.23 ± 0.16	18.40 ± 0.28
E373-Hida	$^{12}_{\Lambda\Lambda}\mathrm{Be}$	22.48 ± 1.21	—	20.72 ± 0.20
E176	$^{13}_{\Lambda\Lambda}\mathrm{B}$	23.4 ± 0.7 *	—	23.21 ± 0.21
† E. Hiyama	et al., l	PRL 104 (2010) 212502, & r	efs. therein.
†† A. Gal, D.	J. Mille	ener, PLB 701	$(2011) \ 342, \ as$	ssuming that
$< V_{\Lambda\Lambda} > \approx \Delta$	$B_{\Lambda\Lambda} \begin{pmatrix} 6\\ \Lambda\Lambda \end{pmatrix}$	He)=0.67±0.16	MeV.	

- Assuming production in $^{10}_{\Lambda\Lambda}$ Be non g.s. 2⁺(3.04 MeV). ‡
- Assuming ${}^{13}_{\Lambda\Lambda}B_{g.s.}$ decay to ${}^{13}_{\Lambda}C^*(5/2^+, 3/2^+; 4.8 \text{ MeV}) + \pi^-$. *
- Unassigned events: Hida [PTPS 185 (2010) 335] & Mino [PTEP 2019 (2019) 021D02].
- Search for lighter $\Lambda\Lambda$ hypernuclei.

Faddeev calc. by I.N. Filikhin, A. Gal, NPA 707 (2002) 491 $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) \equiv B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He}) - 2B_{\Lambda}({}_{\Lambda}{}^{5}\text{He}) \approx 0.7 \text{ MeV}$ implying that ${}_{\Lambda\Lambda}{}^{5}\text{H} \& {}_{\Lambda\Lambda}{}^{5}\text{He}$ are also bound. With ${}_{\Lambda\Lambda}{}^{4}\text{H}$ likely unbound, $\Lambda\Lambda$ binding onset is ${}_{\Lambda\Lambda}{}^{5}\text{H} \& {}_{\Lambda\Lambda}{}^{5}\text{He}$.

#EFT of Light Hypernuclei

Overbinding problem in s-shell

(MeV)	$B_{\Lambda}(^{3}_{\Lambda}\mathbf{H})$	$B_{\Lambda}(^4_{\Lambda}{ m He_{g.s.}})$	$E_x({}^4_{\Lambda}{ m He}_{ m exc.})$	$B_{\Lambda}(^{5}_{\Lambda}{ m He})$
Exp.	0.13(5)	2.39(3)	1.406(3)	3.12(2)
Dalitz	0.10	—	—	\geq 5.16
MC(I)	—	2.13(8)	—	5.1(1)
MC(II)	-1.2(2)	1.22(9)	—	3.22(14)
χ LO(600)	0.11(1)	2.444	1.278	5.82(2)
χ LO(700)	—	2.423	1.941	4.43(2)
χ NLO13(500)	0.135	1.705	0.915	—
χ NLO19(650)	0.095	1.530	0.614	—

- All models use ΛNN terms to some extent.
- LO cutoff dependent; NLO worse than LO.
- ${}^{3}_{\Lambda}$ H: (I,S)=(0, $\frac{1}{2}$); (0, $\frac{3}{2}$) & (1, $\frac{1}{2}$) unbound.

2-body & 3-body diagrams in #EFT L. Contessi, M. Schafer, N. Barnea, A. Gal, J. Mareš PLB 797 (2019) 134893

Nuclei: C_1 , C_2 from NN scattering lengths, fit D_1 to $B(^{3}H)$, then 'predict' $B(^{4}He)$. How to proceed in $\Lambda & \Lambda \Lambda$ hypernuclei?

s-shell Λ hypernuclei in #EFT

L.Contessi N.Barnea A.Gal, PRL 121 (2018) 102502 Fit 2 ΛN LECs to ΛN scattering lengths. Fit 3 ΛNN LECs to the three known A=3,4 levels. $B_{\Lambda}({}_{\Lambda}^{5}He)$ vs. cut-off λ in LO #EFT SVM

Contessi et al. s-shell $\Lambda\Lambda$ hyp. in #EFT

A Tjon-line correlation similar to that in FG 2002. Weak dependence on the $\Lambda\Lambda$ LEC related to $a_{\Lambda\Lambda}$. The $\Lambda\Lambda$ N LEC is fitted to $\Delta B_{\Lambda\Lambda}({}_{\Lambda\Lambda}{}^{6}\text{He})$

Recent #EFT $\Lambda\Lambda$ calculations

- Contessi-Schafer-Barnea-Gal-Mareš, PLB 797 (2019) 134893.
- Neutral systems $\Lambda\Lambda n$ & $\Lambda\Lambda nn$ safely unbound.
- Argue that $\Lambda\Lambda \Xi N$ coupling effect is minor.

Summary & Outlook

- ${}_{\Lambda}^{5}$ He overbinding problem resolved.
- Role of ΛNN forces in ${}^{A}_{\Lambda}Z$ & neutron stars?
- ${}^{3}_{\Lambda}$ n (Ann) is unbound.
- Onset of $\Lambda\Lambda$ binding: ${}^{4}_{\Lambda\Lambda}$ H or ${}^{5}_{\Lambda\Lambda}$ Z? (E07, P75).
- ${}^{3}_{\Lambda\Lambda}n$ ($\Lambda\Lambda n$) and ${}^{4}_{\Lambda\Lambda}n$ ($\Lambda\Lambda nn$) are unbound.
- Shell model works well for g.s. beyond ${}_{\Lambda\Lambda}{}^{6}$ He.
- Study excited states by slowing down Ξ^- from $\bar{p}p \to \Xi^- \bar{\Xi}^+$ in FAIR (PANDA).

Thanks for your attention!