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The coalescence model
§ 1960s

1) Butler and Pearson, PR 129, 836 (1963): Two nucleons coalescence
into a deuteron with the nuclear matter acting as a catalyzer. In  
second-order perturbation theory, 

2) Schwalzschild and Zupancic, PR 129, 854 (1963): The deuteron-to-
proton ratio is governed by the probability of finding a neutron
within a small sphere of radius ρ around the proton in momentum
space

DE UTERON 8 F ROM HIGH —ENERGY P ROTON BOM 8ARDMENT

can then be carried out quite simply, and we do so in
Sec. 4.
Consider two nucleons (neutron and proton) of

momenta Ak~ and Ak~, respectively, so that the initial
wave function fo is

&0= (1/L') exp[i(ki. ri+k2. r2)], (1)
where I is the linear dimension of a normalization cube.
The final wave function P describing a deuteron with
momentum K is then
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where H;,") and H, y") are first-order matrix elements
to and from an intermediate state j, respectively. We
devote the remainder of this section evaluating H;f ".
There are three types of contributions to (4), corre-

sponding to the three diagrams of Fig. 1. We consider
first the term, say [H;r"&)&, for which particle 1, with
wave vector ki, is scattered by V(ri) into an inter-
rnediate state, k~', and, thereafter, joined to particle 2
in a deuteron by &&(r). For this term we have

1
[II;,&'&]&——— dri exp[i(k&—k,') r,)V(ri)L'

1=—g(~ ki—ki' ~ ),II
where g is the Fourier transform of V.
Similarly, we have

[8&f&'&]&= dr&dr~ exp[i(ki' ri+k& r&)]I8LI/O
X&&(r)x(r) exp(—iK R)

(kr)~
b(K'—K) dr exp(—ik' r)&&(r)&&(r), (6)

L$LI/2

&t
= (1/LI&')&&(r) exp(iK R), (2)

where R is the c.m. coordinate -', (ri+r2), r is the relative
coordinate r~—r~, and g is the internal deuteron wave
function.
The transition probability ~(K)dK that after time t

the optical potential V(ri)+V(r2), combined with the
internal neutron-proton interaction n(r), produces a
deuteron of wave vector K in the interval dK is

41st" Izsin'(&w&ft)
&d(K)dK= p(K)dK.

ft' r&&;t'

Here H;f(" is the second-order matrix element involving
the product (V,&&), p(K) is the density of fi»al states,
and

kN;f= 8;—Ef,
where E; and Ef are the initial and final energies,
respectively.
The second-order matrix element H;f(') is given as

Fro. j.. Diagrams {a), {b), {c) illustrate the simplest means of
deuteron formation. RI, 4 are the momenta of the proton and
neutron in the initial state, q the recoil of the nucleus, and K the
deuteron momentum in the final state. In case {a) the neutron
and proton interact first with each other to form an intermediate
deuteron state. This deuteron is then scattered by the nucleus
into the final state. In case {b) the neutron is scattered into an
intermediate state by an interaction with the nucleus. The
scattered neutron and an unscattered proton then interact with
each other to form a deuteron. In case (c}a scattered proton pairs
with an unscattered neutron.

where
K'= k~'+k2

~&—~r= (ft'/m) f(sK—k2)'+v'] (10)
Thus after summing over intermediate states we

find our first contribution [H,r&'&)i as
4 C g(~K,—K~)[ff'i"']&=—,(11)
L'L'&2 [k,+-,' (K—K~)]'+y'

where
K;=kg+kg

k,= x, (ki—k2).
Thus K; arri k, are the initial c.rn. and internal wave
vectors of the two free nucleons.
The second contribution, [B;I&'&]~, with particie 2

being scattered into the intermediate state k2', is

k'= -', (k,'—kr).
If we write x(r) in the Hulthhn form

X(r) = (C/r) (e- " e '), --
the integral in (6) can be readily evaluated to be

—4W(A'/m) [1+(k"+~')/(k"+f')] (S)
where m is the nucleon mass, and A'y'/m is the deuteron
binding energy. We have actually found the e6ect of
the second term (involving f') to be quite small, and
hereafter employ simply the asymptotic form for the
deuteron wave function. For normalization of y we have

C' y'/2&r.

For the term under consideration, the energy
denominator E,—Ef is simply expressed by noting
that k&'——K—k2. We find

Nd(K) / [Np(K/2)]2

dNd(K)/dNp(K) / 4⇡⇢3
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From the energy-conservation factor in (17) we have

E,2=Ep 4(—I/,2+yp)~E2
and thus

x= P K—K, ~
E sin(e/2) Ee/2, (20)

where 0, the angle between I and K;, has very sma]1
contributing values.
After performing the integration over m;f—which

extracts a factor ~~mr—we can also immediately inte-
grate over all angles of h~, and over the azimuthal
angle of I;.The integration over 0—the angle between
K; and K—can be taken from 0~ ~, and we find

482/Cm)2 Vp)2
~(K)=2

~

—
~
I(Ro)LP(2K)1', (21)) Zi

where I(Rp) is a dimensionless number, which is, how-
ever, a function of Ro. We have

I(Rp) = 2/dp/PG(2/)]'

X 12&) +
(f2+o2)2 (f2++2+op) 12~2

1

nl'(I'+~') (I'+-'n'+~')el')
o'+ (1+v/2)'

Xln (22)a'+ (0 n/2)' ——
Here we have defined
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FIG. 3.A comparison of the observed and calculated momentum
distributions for deuterons produced from a Be target at an angle
of 45' in the laboratory system by protons arith incident energy
30 BeV. Curves 2 and 3 are the observed and the calculated
deuteron distribution (34). Curve 1 is the experimental distri-
bution of cascade protons used to calculate (34).The experimental
data are those of Fitch et al. (reference 3).

If we also multiply the deuteron numbers by the spin
factor 4, we have finally

and
G(2/) = (Vo/42/Ro')g(2//Ro), (23)

/pp(K) =
(
—

( (
—)I(Rp)L/J„(-,'K)j' (25)

) E) E~)
where Vo is the central depth of the optical potential.
Thus for a square well, for example, we have

G(2/) = (1/2/2) (sin2/ —2/ cos)/). (24)

The function I(Rp) has been evaluated numerically
for a number of diferent radii using Silliac, both for a
square well, and for a Saxon potential with surface
thickness 0.6 F. The function is plotted in Fig. 2, and
it is seen that the results for the two potential shapes
are very similar. The deuteron formation probability
is essentially the same in each case, the diR'erences
lying within the accuracy of the experimental results
with which we shall make comparisons.
All experimental results have been stated in terms of

a number of particles per unit solid angle, per unit
momentum (1 BeV/c) per circulating proton. Let these
distributions be designated n~ and nq for protons and
deuterons, respectively. Then if q be the eSciency of
the target, we have

I„(k)=2/kpP (k),

ppp(K) =IJZ'pp(K).

where I(2=m Vp/)22 and where A is a wave number corre-
sponding to 1 BeV/c. The value of the efficiency for
the Brookhaven experiments' is thought to be approxi-
mately —,', i.e., q

4. RELATIVISTIC CORRECTIONS

A relativistic calculation is simplified enormously by
the fact that contributions to our matrix elements arise
only from small relative momenta (internal deuteron
momenta). Thus it is only the c.m. motion of the two
nucleons which must be treated relativistically. Only
one time t need be considered, which we still measure
in the laboratory system—i.e., in the frame of reference
in which the optical potential is at rest. All relativistic
corrections then appear in terms of the factor F, with
P—(1 V2/c2) —i/2~(1 v 2/cp) —1/~(] v 2/cp) —i/2 (26)

where V is the c.m. velocity of the two nucleons (almost
unchanged by the deuteron formation), and vi and vp
are the & initial velocities of the two nucleons,
respectively.

S. T. BUTLER AND C. A. PEARSON

in which the center of mass is at rest. Thus
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in place of (9).
C' 2s1'/p (30)

(3) Matrix Elements

Each matrix element of the form

X(r)-Ce-'"/r'
C exp( —yLx +y +1"s'1'~}

SR+ys+P2z2} 1/2

where (x,y,s) are the Cartesian components of r, and
s is the direction of motion of the center of mass. The
requirement that x be normalized to unity in the
laboratory system thus yields

:8
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Fro. 4. As in Fig. 3, the deuterons are produced from a Be target
at an angle of 30' in the laboratory system by protons with
incident energy 30 BeV. The curves are labeled as in Fig. 3, and
the experimental results are those of Schwarzschild and Zupankik
{reference 6).

M'= dr exp(iX r)r/(r)x(r)

now has m(r) and x(r) simply expressed in terms of r'.
By changing the variable of integration form r to r' we
have

1
M =— dr' exp(iX' r')s(r')X(r'),r

where X' is related to X by orentz transformation.
Thus by the evaluation as carried out previously, we
have

(1) Energy Denominators

Consider, for example, the energy denominator (10)
relating to the matrix element $P,/"'l~. This has the
relativistic form

g —gy = (Pl&I/y~~c2+ r//2c4) &/I+ (f/2II Pc&+M2c4) &/&
—O('E' 'c+M~ c)' /,2(27)

where M* is the deuteron mass, and m the nucleon mass.
Ke recall that h~'=K—k2. %e know that contri-

butions arise from lr2~$K, and can, therefore, expand
the terms of (2'7) around lt2 yK, and——also in terms of
the binding energy ~ of the deuteron. VVe 6nd

E; Ez c'[ft'—(-,'E)——'c'+ra'c'] '/'-
x P &(gK—14)'+m.j

= (1/1') (@'/~)L(kK—1.)'+~'j. (2g)

This is the same as the nonrelativistic result (10),
apart from the factor 1/I". The same is true for the other
energy denominators.
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(31)

(2) Internal Deuteron Coordinates
The deuteron wave function x now assumes its

simple spherically symmetrical form only in terms of
the relative coordinate, say r', in the frame of reference

I 1 I

.2 .4 .6 .8 I.O I.2 t.4
MOME k TUM 8eV/ c

Fxo. 5. As in Fig. 3, the deuterons are produced from a Be
target at an angle of 90' in the laboratory system by protons
with incident energy 30 BeV. The curves are labeled as in Fig. 3,and the experimental data are those of Fitch et al. {reference 3).

3



VOLUME 37, NUMBER 11 PHYSICAL REVIEW LETTERS 15 SEPTEMBER 1976

s [ ~ f
r

I
r I

i i I r
1

(j t He He
TABLE I. Radius P p (MeV/c) of the momentum

sphere for coalescence.

10.—
30'
60'
90'

3Qo

60 30'
He He

b 100—
I\ Id

10=

90'

400 MeV/nucl.

I I I .. I I I .. I

30'

60'

'He

QO

4He

Ne+U
250 MeV/nucleon
400 MeV/nucleon
2.1 GeV/nucleon

4He +U
400 MeV/nucleon

126
129
106

140
129
116

126 127

135
129
106

147
142
118

127 132

0.1—

90'

120'

00

Qo

30'

60'

-: 250 MeV/nucl.

fragment, the value of p„ for calculating the ab-
solute cross sections, energy spectra, and angu-
lar distributions. The P, values are remarkably
uniform, even though absorbed into this parame-
ter are the many factors, including correlations,
not explicitly accounted for in this very simple
model.
In conclusion, we have found strong evidence

for final-state interactions in the production of
high-energy fragments (30 to 120 MeV/nucleon)
in relativistic heavy-ion-induced reactions. This
result could suggest that future work concerning
the possible detection of density effects in these
collisions should concentrate on the nucleon and
meson spectra since the energy spectra of the
composite particles can be obtained from Eq. (2)
and are shifted in energy and angle relative to
those of the nucleons. On the other hand, we
have data, showing that the particle multiplicity
increases with the size of the fragment. Thus the
observation of the larger composite particles
might be a way of selecting central collisions and
may be a sensitive probe of density effects. We
do not, however, have an understanding of the de-
tailed mechanism leading to coalescence. Equa-
tion (2) leads to a different fragment energy de-
pendence from that found in the original work of
Butler and Pearson. ' Further theoretical work
is needed to understand the difference between

20 60 20 60 20 60 106 20 60 100
EI~b (MeV/nucl. )

FIG. 3. Experimental points and calculated lines for
the double-differential cross sections of fragments
from the irradiation of uranium by Ne ions at 250
and 400 MeV/nucleon.

the two models. Earlier experimental results of
Crawford et al.' on high-energy boron to oxygen
fragments are also consistent with this model.
The high-energy tails in tQe energy spectra of
helium to beryllium fragments from uranium ir-
radiated by 5-GeV protons' can now be under-
stood by this mechanism with a reasonable value
of P, of about 140 MeV/c. This eliminates the
previously postulated apparent temperatures of
20 MeV needed to explain these tails. This mod-
el could also aid in the understanding of the scal-
ing effect seen in the production of d, t, 'He, and
He by high-energy pions and protons. '
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FIG. 6. Central transverse mass spectra: ARC simulations are compared to E802 experiments. The proton data and theory are displayed
in nine rapidity bins beginning at y lab50.5 and of width Dy50.2; the deuteron data and theory appear in six such bins ending at
y lab51.5. The spectra in successive bins are reduced by factors of 10. Dynamical coalescence determines the wave packet size for the
coalescing nucleon pair, in this case after propagating their interacting comovers up to the pair light cone. There are then no free parameters
in the theory, the deuteron relative wave function being characterized by the experimentally determined point size. There is little variation
in these results with the deuteron size, at least, near the value 1.91 fm used here. Using a different prescription for the propagation point, for
example, some ‘‘average’’ time in the past, also has very little effect. Centrality is fixed using the E802 specified TMA cut. Little sensitivity
to this cut is evident here. We note the proton spectra in this figure and hereafter are automatically corrected for deuteron formation; i.e.,
coalescing protons ~and neutrons! are removed from the cascade. Since the proton spectra enter essentially quadratically in deuteron
formation, the theory is to be judged also by the matching to singles, a remark which applies to all further results.

FIG. 7. Peripheral transverse mass spectra from ARC dynamical coalescence under the same circumstances as in Fig. 6. There are fewer
deuteron rapidity bins. Peripherality is defined using the E802 prescription; there is greater sensitivity to this trigger than for central
collisions. The proton spectra give some indication of the accord between the theoretical and experimental definitions of the trigger.

54 345MODELING CLUSTER PRODUCTION AT THE BNL . . .
Kahana et al., PRC 54, 388 (1996)
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Table 1
Parameters of the blast-wave-like analytical parametrization for (anti-)nucleon 
phase–space freezeout configuration.

T (MeV) ρ0 R0 (fm) τ0 (fm/c) #τ (fm/c) ξp ξp

FO1 111.6 0.98 15.6 10.55 3.5 10.45 7.84
FO2 111.6 0.98 12.3 8.3 3.5 21.4 16.04

Furthermore, we assume the harmonic wave function for all the 
light (anti-)nuclei in the rest frame except the (anti-)deutrons for 
which we use the well-known Hulthén wave function (see, e.g., 
Refs. [40,41]). The Wigner function of the nucleus can then be ob-
tained as [42]

ρW
c (x1, . . . , xM; p1, . . . , pM)

= ρW (q1, · · ·,qM−1,k1, · · ·,kM−1)

= 8M−1 exp
[
−

M−1∑

i=1

(q2
i /σ

2
i + σ 2

i k2
i )

]
, (18)

with σ 2
i = (mi w)−1 where the harmonic oscillator frequency ω is 

related to the root-mean-square (rms) radius of the nucleus as fol-
lows

〈
r2

M

〉
= 3

2M
1/ω

∑M
i=1 mi

M∑

i=1

⎡

⎣mi

⎛

⎝
M∑

j=i+1

1
m j

+
i−1∑

j=1

1
m j

⎞

⎠

⎤

⎦ . (19)

Therefore, σ 2
i can be determined by 

〈
r2

M

〉
. In the case of m1 = m2 =

· · · · ·· = mM = m, one can obtain σ 2 = 2M
3(M−1)

〈
r2

M

〉
.

3. Result and discussion

3.1. (Anti-)nucleon freezeout configuration from light (anti-)nuclei 
production

We focus on the midrapidity light (anti-)nuclei production in 
central Au+Au collisions at √sNN = 200 GeV in this work. In this 
case, there are totally six parameters in the blast-wave-like an-
alytical parametrization for (anti-)nucleon phase–space freezeout 
configuration, namely, the kinetic freeze-out temperature T , the 
transverse rapidity ρ0, the longitudinal mean proper time τ0, the 
time dispersion #τ , the transverse size at freeze-out R0, and the 
fugacity of particle ξ .

For proton phase–space freezeout configuration, we obtain the 
local temperature T = 111.6 MeV, the transverse rapidity ρ0 =
0.978, and a constraint on the combination of the proton fugac-
ity ξp , τ0, #τ and R0, by fitting the measured spectrum of protons 
in Au+Au collisions at √sNN = 200 GeV for 0–5% centrality [48]. 
To extract the values of ξp , τ0, #τ and R0, we further fit the 
measured spectra of deuterons and 3He [49] simultaneously us-
ing the results from the coalescence model (see the Subsection 3.2
for the details), which leads to R0 = 15.6 fm, τ0 = 10.55 fm/c, 
#τ = 3.5 fm/c and ξp = 10.45. For antiprotons, we assume they 
have the same phase–space freezeout configuration as protons ex-
cept the fugacity is reduced to ξp = 7.84 to describe the measured 
yield ratio p̄/p = 0.75 [48]. Table 1 summarizes the parameters 
of the blast-wave-like analytical parametrization for (anti-)nucleon 
phase–space freezeout configuration (denoted as FO1). It should be 
pointed out that we have neglected the difference between protons 
and neutrons (antiprotons and antineutrons) for the phase–space 
freezeout configuration due to the small isospin chemical potential 
at freezeout in Au+Au collisions at √sNN = 200 GeV [29]. Based on 
the freezeout configuration of (anti-)nucleons, one can then predict 
the production of light (anti-)nuclei using the coalescence model.

Table 2
Statistical factor gc , root-mean-square radii rrms [50,51] and binding energy Eb [52]
of light (anti-)nuclei.
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Fig. 1. Transverse momentum distributions of light nuclei at midrapidity (y = 0) in 
central Au+Au collisions at √sNN = 200 GeV predicted by coalescence model with 
FO1 (solid lines) and FO2 (dashed lines). The experiment data of protons is taken 
from the PHENIX measurement [48] whereas those of light nuclei are from the STAR 
measurement [12,49]. The data point of protons from STAR measurement has been 
scaled by a factor of 0.6 to correct the weak decay effects [54].

3.2. The production of light (anti-)nuclei

We use the coalescence model described above to calculate the 
production of light (anti-)nuclei. In the coalescence model, the 
statistical factor gc is quite important and it is given by gc =
2 j+1

2N [24] with j and N being, respectively, the spin and the nu-
cleon number of the nucleus. The spins of d, 3He, 4He, 5Li and 6Li 
are 1, 1/2, 0, 3/2 and 1, respectively. Furthermore, the rms radius 
rrms of the light nucleus is also important since it determines the 
harmonic oscillator frequency parameter ω in the Wigner function 
of the nucleus. The rrms of d, 3He, 4He, 5Li and 6Li are taken to be 
1.96 fm, 1.76 fm, 1.45 fm, 2.5 fm and 2.5 fm, respectively [50,51]. 
Here the rrms = 2.5 fm for 5Li is estimated based on the work in 
Ref. [51]. For the antinuclei, we assume they have the same ground 
state properties as their corresponding nuclei. Table 2 summarizes 
the statistical factors, rms radii as well as the binding energies [52]
of different light (anti-)nuclei. It should be mentioned that while 
d (d), 3He (3He), 4He (4He) and 6Li (6Li) are stable, 5Li (5Li) is un-
stable against the proton (antiproton) decay with half-life of about 
370 × 10−24 s (i.e., 111 fm/c) [53] and thus it may be identified 
through the p–4He (p–4He) invariant mass spectrum in heavy-ion 
collisions.

Fig. 1 shows the predicted midrapidity transverse momentum 
distributions of p, d, 3He, 4He, 5Li and 6Li together with the ex-
perimental data of p from PHENIX collaboration [48] and the data 
of p, d, 3He and 4He from STAR collaboration [12,49,54] in central 
Au+Au collisions at √sNN = 200 GeV. It is seen that the coales-
cence model predictions with the freezeout configuration FO1 are 
in very good agreement with the measured transverse momentum 
distributions of p, d and 3He as expected but significantly under-
estimate the measured yield of 4He by a factor of about 6. The 
similar feature was also observed in the calculations in Ref. [22].

From Table 2, one can see that 4He has a specially larger bind-
ing energy value compared to d or 3He, and thus it is more 
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Table 1
Parameters of the blast-wave-like analytical parametrization for (anti-)nucleon 
phase–space freezeout configuration.

T (MeV) ρ0 R0 (fm) τ0 (fm/c) #τ (fm/c) ξp ξp

FO1 111.6 0.98 15.6 10.55 3.5 10.45 7.84
FO2 111.6 0.98 12.3 8.3 3.5 21.4 16.04

Furthermore, we assume the harmonic wave function for all the 
light (anti-)nuclei in the rest frame except the (anti-)deutrons for 
which we use the well-known Hulthén wave function (see, e.g., 
Refs. [40,41]). The Wigner function of the nucleus can then be ob-
tained as [42]
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Therefore, σ 2
i can be determined by 
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. In the case of m1 = m2 =

· · · · ·· = mM = m, one can obtain σ 2 = 2M
3(M−1)

〈
r2

M

〉
.

3. Result and discussion

3.1. (Anti-)nucleon freezeout configuration from light (anti-)nuclei 
production
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local temperature T = 111.6 MeV, the transverse rapidity ρ0 =
0.978, and a constraint on the combination of the proton fugac-
ity ξp , τ0, #τ and R0, by fitting the measured spectrum of protons 
in Au+Au collisions at √sNN = 200 GeV for 0–5% centrality [48]. 
To extract the values of ξp , τ0, #τ and R0, we further fit the 
measured spectra of deuterons and 3He [49] simultaneously us-
ing the results from the coalescence model (see the Subsection 3.2
for the details), which leads to R0 = 15.6 fm, τ0 = 10.55 fm/c, 
#τ = 3.5 fm/c and ξp = 10.45. For antiprotons, we assume they 
have the same phase–space freezeout configuration as protons ex-
cept the fugacity is reduced to ξp = 7.84 to describe the measured 
yield ratio p̄/p = 0.75 [48]. Table 1 summarizes the parameters 
of the blast-wave-like analytical parametrization for (anti-)nucleon 
phase–space freezeout configuration (denoted as FO1). It should be 
pointed out that we have neglected the difference between protons 
and neutrons (antiprotons and antineutrons) for the phase–space 
freezeout configuration due to the small isospin chemical potential 
at freezeout in Au+Au collisions at √sNN = 200 GeV [29]. Based on 
the freezeout configuration of (anti-)nucleons, one can then predict 
the production of light (anti-)nuclei using the coalescence model.

Table 2
Statistical factor gc , root-mean-square radii rrms [50,51] and binding energy Eb [52]
of light (anti-)nuclei.
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Fig. 1. Transverse momentum distributions of light nuclei at midrapidity (y = 0) in 
central Au+Au collisions at √sNN = 200 GeV predicted by coalescence model with 
FO1 (solid lines) and FO2 (dashed lines). The experiment data of protons is taken 
from the PHENIX measurement [48] whereas those of light nuclei are from the STAR 
measurement [12,49]. The data point of protons from STAR measurement has been 
scaled by a factor of 0.6 to correct the weak decay effects [54].

3.2. The production of light (anti-)nuclei

We use the coalescence model described above to calculate the 
production of light (anti-)nuclei. In the coalescence model, the 
statistical factor gc is quite important and it is given by gc =
2 j+1

2N [24] with j and N being, respectively, the spin and the nu-
cleon number of the nucleus. The spins of d, 3He, 4He, 5Li and 6Li 
are 1, 1/2, 0, 3/2 and 1, respectively. Furthermore, the rms radius 
rrms of the light nucleus is also important since it determines the 
harmonic oscillator frequency parameter ω in the Wigner function 
of the nucleus. The rrms of d, 3He, 4He, 5Li and 6Li are taken to be 
1.96 fm, 1.76 fm, 1.45 fm, 2.5 fm and 2.5 fm, respectively [50,51]. 
Here the rrms = 2.5 fm for 5Li is estimated based on the work in 
Ref. [51]. For the antinuclei, we assume they have the same ground 
state properties as their corresponding nuclei. Table 2 summarizes 
the statistical factors, rms radii as well as the binding energies [52]
of different light (anti-)nuclei. It should be mentioned that while 
d (d), 3He (3He), 4He (4He) and 6Li (6Li) are stable, 5Li (5Li) is un-
stable against the proton (antiproton) decay with half-life of about 
370 × 10−24 s (i.e., 111 fm/c) [53] and thus it may be identified 
through the p–4He (p–4He) invariant mass spectrum in heavy-ion 
collisions.

Fig. 1 shows the predicted midrapidity transverse momentum 
distributions of p, d, 3He, 4He, 5Li and 6Li together with the ex-
perimental data of p from PHENIX collaboration [48] and the data 
of p, d, 3He and 4He from STAR collaboration [12,49,54] in central 
Au+Au collisions at √sNN = 200 GeV. It is seen that the coales-
cence model predictions with the freezeout configuration FO1 are 
in very good agreement with the measured transverse momentum 
distributions of p, d and 3He as expected but significantly under-
estimate the measured yield of 4He by a factor of about 6. The 
similar feature was also observed in the calculations in Ref. [22].

From Table 2, one can see that 4He has a specially larger bind-
ing energy value compared to d or 3He, and thus it is more 
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Binding energy effect on light nuclei production

§ 4He is formed earlier
because its larger binding
energy.

§ Assuming a similar effect 
for 5Li and 6Li leads to their
enhanced production.

8



Extended blast-wave model for light nuclei production

§ Both deuteron and 3He elliptic flows are better described after 
allowing  nucleons with momenta larger than p0=0.9 GeV more
spread in space when their momenta are more aligned along the 
reaction plane.

Momentum� space correlation : R = R0ea(pT�p0), (|px| > |py)

9

Yin, ko, Sun & Zhu, PRC 95, 054913 (2017)
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§ AMPT + Coalescence reproduces data reasonably well.
§ Blast wave mode fails.
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IEBE-VISHNU hybrid model with AMPT initial conditions

Elliptic flow of deuteron measured by ALICE  is also satisfactorily described.  
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Particle yields in thermal model
Braun-Munzinger and Donigus, NPA 987, 144 (2019)
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Coalescence model in the sudden approximation

Wave functions for 
initial |i>=|1,2>
and final |f>=|3>
states 

Probability for particle 1 of momentum k1 and particle 2 of 
momentum k2 to coalescence to cluster 3 with momentum K

Wigner functions

Probability for 1+2 -> 3   P = |hf |ii|2

dN

d3K
= g

Z
d3x1d

3k1d
3x2d

3k2W1(x1,k1)W2(x2,k2)
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W (y,k) =
Z
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1d
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For a system of particles 1 and 2 with phase-space distributions fi(xi,ki) 
normalized to                                      , the number of particle 3 produced 
from coalescence of N1 of particle 1 and N2 of particle 2

Statistical factor for two particles of spin 
J1 and J2 to form a particle of spin J  g = 2J+1

(2J1+1)(2J2+1)

The above formula can be straightforwardly generalized to multi-
particle coalescence, but is usually used by taking particle Wigner 
functions as delta functions in space and momentum. 

Wigner function Wi(xi’,ki’) centers around xi and ki

Z
d3xid
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Gyulassy, Frankel, and Remler, NPA 402, 596 (1983): Generalized 
coalescence model using nucleon Wigner functions that are delta 
functions in space and momentum, i.e., evaluating

with

It is later called by Kahana et al. the standard Wigner calculation in
contrast to the general one which they called the quantum Wigner 
calculation.
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Deuteron number in the coalescence model
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Deuteron number in the coalescence model (Continued)
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In this limit, the coalescence model gives 
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Time evolution of baryon entropy in relativistic heavy 
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§ Baryon entropy per baryon remains essentially constant during
hadronic evolution, thus similar d/p ratio at TC and TK
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Chemical freeze-out in relativistic heavy ion collisions
Jun Xu & CMK, PLB 772, 290 (2017)

§ Both ratio of effective particle numbers and entropy per particle 

remain essentially constant from chemical to kinetic freeze-out.
20
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Deuteron production from an extended ART model 

§ Include deuteron production 
(n+p→ d+π) and annihilation 
(d+π → n+p) as well as its 
elastic scattering      

§ Similar emission time 
distributions for protons 
and deuterons in 
coalescence model

§ Slight different deuteron 
emission time distribution in 
transport  and coalescence 
models  
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Oh & Ko, PRC 76, 054910 (2007); Oh, Lin & Ko, PRC 80, 064902 (2009)
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Time evolution of proton and deuteron numbers

§ Both proton and deuteron numbers decrease only slightly 
with time → early chemical equilibration
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Deuteron production in SMASH Oliinychekov, Pang, Elfner & Koch, 
PRC 99, 044907 (2019)  

§ Using a large 
!"" ↔ !$ cross
section of about
100 mb.

§ Deuteron number
essentially remains 
unchanged during 
hadronic evolution  
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Deuteron production in kinetic theory Cho & Lee, PRC 97, 024911 
(2018)

!"#(%)
!% = (

)
*+),+) -)"+ % −(

)
*#),#) -)"# %

§ Using

* !/0 → 22 = 50mb
to take into account the   
large cross section due to 
!/0 → 2-/0

§ Time evolution of 
temperature and volume 
from a schematic hydro 
model.

§ Final abundance    
independent of initial   
abundance.
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Binding energies of light nuclei in hot dense matter
G. Roepke
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System size dependence of light nuclei yield
Sun, Ko & Doenigus, PLB 792, 132 (2019)

§ Coalescence model gives a natural 

explanation for the suppressed

production of light nuclei in small

collision systems.

§ Thermal model requires an

unrealistically large canonical 

correlation volume for charge 

conservation. [Vovchenko, Doenigus

& Stoecker, PLB 785, 171 (2018)]
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Hypertriton production in coalescence model 
Zhang & Ko, PLB 780, 191 (2018)

§ Because of its large size, hypertriton yield changes little after long 
free streaming of kinetic freeze out nucleons if produced from 
their coalescence. 

!" = 130 keV
*" ≈ 10.6 fm



Neutron relative density fluctuation from yield ratio of light nuclei

Op-d-t =
N3HNp

N2

d

= g
1 + (1 + 2↵)�n

(1 + ↵�n)2

�n =
h(�n)2i

hni2

h�n�npi = ↵
hnpi

hni
h(�n)2i

§ Expect a similar behavior for  
!"#
$%& from u-quark density fluctuation.          28

Sun, Chen, Ko & Xu, PLB 774, 103 (2017); 781, 499 (2018) 

α: correlation factor

TC ≈ 144 MeV
μC ≈ 385 MeV
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Neutron relative density fluctuation from STAR data
Dingwei Zhang, for the STAR Collaboration, QM2018

§ Neutron density fluctuation extracted from !"!#/!%& also shows
a peak like at SPS but at a higher energy.
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@tf + p/E ·rf �rH ·rpf = C[f ]

Transport description of quark matter in a box based on NJL

C[f] includes quark elastic scattering with cross section of 3 mb
§ Left: nq = 0.4/fm3,

T = 100 MeV; outside
spinodal region

§ Right: nq = 0.4/fm3,
T = 20 Mev, inside 
spinodal region; 
large density 
fluctuations appear 
due to growth of 
unstable modes

§ Colored regions
correspond to 
Nq > 0.6/fm3

Feng & Ko, PRC  93, 035205 (16); 95, 055203 (17) 



Summary 

§ Coalescence model gives similar light nuclei yields in HIC as the thermal 
model if their binding energies are small compared to the temperature of 
the hadronic matter and their thermal wave lengths are much smaller than 
their sizes.  Both results are similar to that from transport model studies in 
which deuterons are assumed to remain bounded and can be produced and 
dissociated.

§ Coalescence model can naturally explain the suppressed production of light 
nuclei in collisions of small systems.

§ Hypertriton is expected to be produced significantly later after nucleons 
and lambda have frozen out because of its large size and small binding. 

§ Nucleon density fluctuations enhance the production of light nuclei,
providing a possible explanation for the experimental observations at SPS    
and RHIC. 

§ Understanding how quark density fluctuations due to the spinodal 
instability in baryon-rich quark matter can survive during hadronic 
evolution remains a challenge. 
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