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The coalescence model

1960s

1) Butler and Pearson, PR 129, 836 (1963): Two nucleons coalescence

into a deuteron with the nuclear matter acting as a catalyzer. In
second-order perturbation theory,

A A A

2) Schwalzschild and Zupancic, PR 129, 854 (1963): The deuteron-to-
proton ratio is governed by the probability of finding a neutron

within a small sphere of radius p around the proton in momentum

space A
dNq(K)/dNp(K) o
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F16. 3. A comparison of the observed and calculated momentum
distributions for deuterons produced from a Be target at an angle
of 45° in the laboratory system by protons with incident energy
30 BeV. Curves 2 and 3 are the observed and the calculated
deuteron distribution (34). Curve 1 is the experimental distri-
bution of cascade protons used to calculate (34). The experimental
data are those of Fitch et al. (reference 3).
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F16. 4. Asin Fig. 3, the deuterons are produced from a Be target
at an angle of 30° in the laboratory system by protons with
incident energy 30 BeV. The curves are labeled as in Fig. 3, and

the experimental results are those of Schwarzschild and Zupand&ic
(reference 6).



Coalescence production of light nuclei at Bevalac
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the double-differential cross sections of fragments
from the irradiation of uranium by *’Ne ions at 250

and 400 MeV/nucleon.

Gutbrod et al., PRL 37, 667 (1976)

A3 N BN,
Ea—, 2 = By (Ep Bp)
P dps,

Coalescence radius py (MeV)

Nuclei1 250 400
d 126 129

t 140 129
SHe 135 129
“He 157 142

Butler & Peterson, PR 129, 836 (1963)
Schwalzchild & Zupancic, PR 129, 854
(1963)
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Evidence for a Soft Nuclear-Matter Equation of State

Philip J. Siemens® and Joseph I Kapusta
Lawvrence Berkeley Labovatory, University of California, Bevrkeley, California 94720
(Received 3 August 1979)

The entropy of the fireball formed in central collisions of heavy nuclei at center-of-
mass kinetic energies of a few hundred MeV per nucleon is estimated from the ratio of
deuterons to protons at large transverse momentum. The observed paucity of deuterons
suggests that strong attractive forces are present in hot, dense nuclear matter, or that
degrees of freedom beyond the nucleon and pion may already be realized at an excita-
tion energy of 100 MeV per baryon.
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Entropy per baryon and the d/p ratio Siemens & Kapusta,
Y [p PRL 43, 1486 (1979)
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Coalescence production of light nuclei at AGS

Kahana et al., PRC 54, 388 (1996)
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Binding energy effect on light nuclei production

10 T T
Au+Au@200 GeV and y=0 Sun and Chen, PLB 751, 272 (2015)

e (Central Collisions)

B PHENIX

Y% % STAR
10_5 Coal. (FO1) . .

**\*\‘ ~Ceal.(FO2) §  m 4He js formed earlier
S8F == === _ iy because its larger binding

energy.

dN*2np_dp.dy (c’/GeV?)
=

1o = Assuming a similar effect

e for °Li and °Li leads to their
enhanced production.

10"

p, (GeV/c)

Table 1
Parameters of the blast-wave-like analytical parametrization for (anti-)nucleon

phase-space freezeout configuration.

T (MeV)  po Ro (fm) 7o (fm/c) At (fm/c) &) &

FO1 111.6 098 15.6 10.55 3.5 10.45 7.84
FO2 111.6 098 123 8.3 3.5 21.4 16.04




Extended blast-wave model for light nuclei production

Yin, ko, Sun & Zhu, PRC 95, 054913 (2017)

Momentum — space correlation : R = Rge®PT=P0)  (|p,| > py)
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= Both deuteron and 3He elliptic flows are better described after
allowing nucleons with momenta larger than py,=0.9 GeV more
spread in space when their momenta are more aligned along the
reaction plane.



Ellitpic flow from STAR Beam Energy Scan PRC 94, 034908 (2016)

04:.4}1(1"@””;200'66\/' Vs, =624 GeV| 1Is,=39GeV | Vs, =27GeV | Vs, =19.6GeV| Vs=11.5GeV] Is,=7.7 GeV
S Au+Au T T T T T T ]
S d
0.of " model w1 5% ,‘.},# t{h“ 1 ] ]
. - & PR % ‘5% b I &
: o o * e P
o.o_—#ﬁﬁ?‘?" --------- --:;'ﬁf’? -------- ﬁﬁ:ﬁ -------- g}‘i}#ﬁ? -------- fﬁi ------- R LA T g
0.4FV °He
>02f A7 v » oy v vv ¢ 1
o.o}---V--v- _______ ___.VY_V._____.___._V_V_V______-____v_ _____________ vy ____l__. V_V_V____.____V___V .....
0.4F At
0.2F 1 I [ 1 i I I ]
e | A s . B N
L k | & Ah 5k A
Oo‘é***“**‘*l
o 1 2 383 4 1 2 3 4 1 2 3 4 1 2 3 4 {1 2 3 4 1 2 3 4 1 2 3 4
p. (GeV/ c)

= AMPT + Coalescence reproduces data reasonably well.
= Blast wave mode fails.
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PHYSICAL REVIEW C 98, 054905 (2018)

Spectra and flow of light nuclei in relativistic heavy ion collisions at energies available at the BNL
Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

Wenbin Zhao,"? Lilin Zhu,® Hua Zheng,*> Che Ming Ko,° and Huichao Song"*’

IEBE-VISHNU hybrid model with AMPT initial conditions
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Elliptic flow of deuteron measured by ALICE is also satisfactorily described. '



Particle yields in thermal model

Braun-Munzinger and Donigus, NPA 987, 144 (2019)
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Figure 11: Thermal model description of the production yields (rapidity density) of different particle species in heavy-
1on collisions at the LHC for a chemical freeze-out temperature of 156.5 MeV (from [59], where more details can be

found, see also [60]).



Coalescence model in the sudden approximation

Wave functions for (r1,19]i) = ¢1(r1)da(rs)

initial |i>=|1,2> 1 ket /2

and final |f>=]3> (r1,r2|f) = N 140229 (1) — 15)
states

Probability for 1+2 -> 3 P = ’(f\@>|2

Probability for particle 1 of momentum k; and particle 2 of
momentum k, to coalescence to cluster 3 with momentum K

dN
d3—K — g/d3X1d3k1d3X2d3k2W1(X17kl)WQ(X27k2)

ki — k
XW(y,k)5(3)(K_kl_k2), y = X1 — Xo, k = 1 > 2

Wigner functions W (x,k) = /d3y¢* (x — %) b (x i %) e iky



For a system of particles 1 and 2 with phase-space distributions f(x, k)
normalized tO/dSXidBkifi(Xz’; k;) = N;, the number of particle 3 produced
from coalescence of N, of particle 1 and N, of particle 2

dN

R Y / d°x1d° k1 d°x2d° ks f1(x1, k1) f2(x2, k2)

x  W(y,k)0® (K —k; — ko)

— d3x, d°K, d>xhd3k!
(k) = [ s S W o K Wa s KW (3 K

Wigner function W,(x.’,k’) centers around x; and k

_ 2741 Statistical factor for two particles of spin
T RAEDRRTD J; and J, to form a particle of spin J

The above formula can be straightforwardly generalized to multi-
particle coalescence, but is usually used by taking particle Wigner
functions as delta functions in space and momentum.



Gyulassy, Frankel, and Remler, NPA 402, 596 (1983): Generalized

coalescence model using nucleon Wigner functions that are delta
functions in space and momentum, i.e., evaluating

— d°x! d°k d3xhd k!
W(Y7k) — / (217.‘.)3 1 (227-‘-)3 2W1(X/17k/1)W2(X/27k/2)W(y/7k/)

with  W;(x},k}) = (27)°6° (x, — x;)6° (k) — k;)

~dN
" BK

2

g/d3X1d3k1d3X2d3k2fl(Xlakl)fQ(X2ak2)
x Wy, k)6® (K —k; — ko)

It is later called by Kahana et al. the standard Wigner calculation in
contrast to the general one which they called the quantum Wigner

calculation.



Deuteron number in the coalescence model

In the coalescence model, the deuteron number is given by

Nd :gd/d3X1/d3k1/d3X2/d3k2f1(X1,kl)fQ(Xg,kg)Wd(Xl —XQ,(kl —kg)/2)

In the above, the proton or neutron distribution function is given by

where T', m and ~ are the temperature, nucleon mass, and fugacity, respectively, and is

normalized to
3/2
N = /d3x/d3kf(x, k) = 27V (T;L—T) .
T

) 3/2
/d3x _y /d3k e~k _ (E) ,
a

with V' being the volume. The deuteron Wigner function is given by

after using

L2 2k2

Wix,k) =8 e o2 e 7K

and is normalized according to

/ dx / Pk W(x, k) = (27,

16



Deuteron number in the coalescence model (Continued)

Changing variables to

X — Xl—;xzu X = X1 — X9,
k, —k
K = k +ky, k= 12 2.

then

Ny = 32(1‘””2 / X / Px o5 | dPK et / Pk e F @+ )

- 329””2 V (702)%? (4rmT)*? n \"
(27)6 o2 + #

_ 932, 2m 72NN,
7 mT + = V

3 /21 \ Y2 1 N, N,
T 212 (mT> (1+ 2 )3/2 Vo (94 =3/4)

mTo?

3 /20 \*? N, N,
mT | VA

Q

(mT > 1/0%)
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In this limit, the coalescence model gives

3 /2r \*? N\N 3

21/2 \'mT V 21/2

T 3/2
= 3Vmiye (T)

Compared with the thermal model,

Nthermal ~ 3‘/71 Y2 / dgke_ 45sz o E;d
‘ (2m)°

7 3/2
= 3V (m_) 6%
T

Je NS§oal 5 Nthermal 5f s, By and mT > 1/07

Why Nahermal (TC) — Nahermal (TK) ?



Time evolution of baryon entropy in relativistic heavy

ion collisions from the hadronic phase of AMPT

3000
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—— total
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= Baryon entropy per baryon remains essentially constant during

hadronic evolution, thus similar d/p ratio at T and Ty
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Chemical freeze-out in relativistic heavy ion collisions

Jun Xu & CMK, PLB 772, 290 (2017)
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= Both ratio of effective particle numbers and entropy per particle
remain essentially constant from chemical to kinetic freeze-out.



Deuteron production from an extended ART model

Oh & Ko, PRC 76, 054910 (2007); Oh, Lin & Ko, PRC 80, 064902 (2009)
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Time evolution of proton and deuteron numbers

0-07 T T T T T T T T | T T T T | T T T T
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" Both proton and deuteron numbers decrease only slightly
with time — early chemical equilibration



Deuteron production in SMASH Oliinychekov, Pang, Elfner & Koch,
PRC 99, 044907 (2019)

0-8[ PbPb, 0-10%, Vs =2.76 TeV, |y| < 1
= . — 1. default :
.8 "- N e 2. 3X CXCCSS Ofd -: [} Using a |arge
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Deuteron production in kinetic theory cho & Lee, PRC 97, 024911

de (7)

(2018)

z (O-vaNl>n NN(T) Z(Udlvdl>n Nd (T)

0.8 1 I ,
| —x—N,'=0.293 .
064 \ N "=0.000 .
| —x—N '=0.766 |
0_
© 0.4- Nd,th =0.293
k.!ﬁ**#-*,****
0.2 - .« e eSS 8 N s "
0.0 ] , —
7.5 10.0 12.5 15.0 175
(fm/c)

Using

o(dnt - pp) = 50 mb
to take into account the
large cross section due to
dnt - pnrn*

Time evolution of
temperature and volume
from a schematic hydro
model.

Final abundance
independent of initial
abundance.
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Binding energies of light nuclei in hot dense matter

binding encrgy B [MeV]
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System size dependence of light nuclei yield

Sun, Ko & Doenigus, PLB 792, 132 (2019)

ALICE published
p+p @ 900 GeV
A ptp@2.76 TeV
e pitp@7TeV
m Pb+Pb @ 2.76 TeV

dip (x107)
o —- N w BN (4] (o] ~ o ¢}

10°

- — COAL. (d-p)
—— COAL. (p-p-n)

(b) 1

dN_, /dn

10°

Ny 3N, 1

~ 2\3/2 r2
Np 4(mTKR ) / 1 + Z?R%
Ns e N Nan 1

Np 4(mTKR2)3/2 1 _|_ TEFIS{Q@

Coalescence model gives a natural
explanation for the suppressed
production of light nuclei in small
collision systems.

= Thermal model requires an

unrealistically large canonical
correlation volume for charge

conservation. [Vovchenko, Doenigus
& Stoecker, PLB 785, 171 (2018)]



Hypertriton production in coalescence model
Zhang & Ko, PLB 780, 191 (2018)
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= Because of its large size, hypertriton yield changes little after long
free streaming of kinetic freeze out nucleons if produced from

their coalescence. .



Neutron relative density fluctuation from yield ratio of light nuclei

Sun, Chen, Ko & Xu, PLB 774, 103 (2017); 781, 499 (2018)
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Neutron relative density fluctuation from STAR data

Dingwei Zhang, for the STAR Collaboration, QM2018
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= Neutron density fluctuation extracted from Nth/NC% also shows
a peak like at SPS but at a higher energy.
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Transport description of quark matter in a box based on NJL

8,f+p/E-Vf—VH-V,f =C[f] Feng&Ko, PRC 93,035205 (16); 95, 055203 (17)
C[f] includes quark elastic scattering with cross section of 3 mb

= Left: n,= 0.4/fm?,
T =100 MeV; outside
spinodal region

= Right: ng=0.4/fm?,
T =20 Mey, inside
spinodal region;
large density
fluctuations appear

due to growth of
unstable modes

= Colored regions
correspond to
Ng>0.6/fm*




Summary

Coalescence model gives similar light nuclei yields in HIC as the thermal
model if their binding energies are small compared to the temperature of
the hadronic matter and their thermal wave lengths are much smaller than
their sizes. Both results are similar to that from transport model studies in
which deuterons are assumed to remain bounded and can be produced and
dissociated.

Coalescence model can naturally explain the suppressed production of light
nuclei in collisions of small systems.

Hypertriton is expected to be produced significantly later after nucleons
and lambda have frozen out because of its large size and small binding.

Nucleon density fluctuations enhance the production of light nuclei,

providing a possible explanation for the experimental observations at SPS
and RHIC.

Understanding how quark density fluctuations due to the spinodal
instability in baryon-rich quark matter can survive during hadronic
evolution remains a challenge.



