AMHME 2019

Overview on exotica production at ATLAS

Yi Fang¹ on behalf of the ATLAS Collaboration

¹ Institute of High Energy Physics, CAS

December 2 – 6, 2019 Wroclaw, Poland

Introduction

X(3872) production in pp collisions at 8 TeV

Search for X(5568) in $B_s^0 \pi^+$ state

Study of $J/\psi p$ resonances in $\Lambda_b \rightarrow J/\psi p K^-$ decays

Summary

- Exotic hadrons: everything beyond qq-meson and qqq-baryon scheme
 - First predicted in 1964 the original papers by M. Gell-Mann and G. Zweig
 - ► First seen by Belle in 2003 [PRL 91, 262001 (2003)] $B^+ \rightarrow X(3872)K^+, X(3872) \rightarrow J/\psi \pi^+ \pi^-$ [aka $\chi_{c1}(3872)$]
- Exotic Charminium-like states
 - X: neutral, positive parity, first seen in B decays
 - ► Y: neutral, negative parity, first seen in *e*⁺*e*⁻ annihilation with ISR
 - Z: charged (and their isospin partners)
 - ► P: pentaquarks, first seen by LHCb in $J/\psi p$ system from $\Lambda_b \rightarrow J/\psi p K^-$ decays [PRL 115, 072001 (2015)]
- Lots of predictions within different theoretical models
 - ► Tetraquarks, diquark-onium, molecules, etc.

The ATLAS detector

- Subsystems most relevant to B-physics:
 - ► Inner Detector (PIX, SCT and TRT): tracking, momentum and vertexing, |η| < 2.5</p>
 - Muon Spectrometer: trigger and muon identification, $|\eta| < 2.7$

Trigger system

- For Run-1, events were collected with mixture of triggers based on identification a J/ψ → μ⁺μ⁻ decay, with muon pT thresholds of either 4 GeV or 6 GeV (vary over run periods).
- ► No lifetime or impact parameter cut at HLT level.

X(3872) production at 8 TeV

Analysis overview

- 11.4 fb⁻¹ of pp collision data at 8 TeV
- J/ψ candidates formed by fitting a muon pair to a common vertex
- Combine a J/\u03c6 candidate with another 2 tracks assumed as pions
- ► Di-muon mass is constrained to the J/ψ mass in a 4-prong vertex fit

Measured cross sections

 The prompt X(3872) cross-section measurement shows good agreement with NLO NRQCD prediction, which considers X(3872) to be a mixture of \(\chi_{c1}(2P)\) and a D⁰D⁺⁰ molecular state.

• However, $\chi_{c1}(2P)$ contribution is dominant and enough to describe the prompt *X*(3872) production.

Measured cross sections

- The non-prompt fraction of X(3872) shows no sizeable dependence on pT
- Agrees within errors with the CMS result at 7 TeV [JHEP 04 (2013) 154]

Ratio of non-prompt X(3872) to $\psi(2S)$

► Long-lived part (fitted with MC kinematic template)

$$R_B^{2L} = \frac{\mathcal{B}(B \to X(3872) + \operatorname{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \operatorname{any})\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (3.57 \pm 0.33_{\text{stat}} \pm 0.11_{\text{syst}}) \times 10^{-2}$$

► B_c small fraction of *b* hadron production at LHC ⇒ Suggestion of *X*(3872) production enhanced in B_c decays

Invariant mass of the dipion system

► The invariant mass distributions of the dipion system in $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ decays is measured.

► The result disfavors a phase-space distribution, and point strongly to the dominance of $X(3872) \rightarrow J/\psi\rho^0$ mode.

Search for X(5568) in $B_s^0 \pi^+$ state Phys. Rev. Lett. 120, 202007 (2018)

ATLAS EXPERIMENT

Analysis overview

D0 reported evidence of a narrow structure, X(5568), which was interpreted as a tetraquark with four different quark flavors: b, s, u, d. [PRL 117, 022003 (2016)]

- 4.9 fb⁻¹ of pp collision data at 7 TeV and 19.5 fb⁻¹ at 8 TeV
- Reconstruct B_s^0 mesons in their decays to $J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

 Combine each of the tracks forming the selected PV with the selected B^o_s candidate

Upper limits on X production relative to B_s^0

No significant signal was found, agrees with LHCb and CMS results which also revealed no signal.

The upper limit set on ρ_X at 95% C.L. varies between 0.010 and 0.018, and does not exceed the ±1σ error band from the expected limit.

Study of $J/\psi p$ resonances in $\Lambda_b o J/\psi p K^-$

- In 2015, LHCb observed two $J/\psi p$ resonant structures in $\Lambda_b \rightarrow J/\psi p K^$ decay and interpreted the resonances as $c\bar{c}uud$ pentaquark states $P_c(4380)^+$ and $P_c(4450)^+$. [PRL 115, 072001 (2015)] State M[MeV] $\Gamma[MeV]$ $P_c(4380)^+$ 4380 ± 8 ± 29 205 ± 18 ± 86 $P_c(4450)^+$ (4380 ± 8 ± 2 3 39 ± 5 ± 19
- ► Later LHCb provided model-independent evidence for $J/\psi p$ resonance contribution to $\Lambda_b \rightarrow J/\psi p K^-$ decays. [PRL 117, 082002 (2016)]
- Recently LHCb showed that P_c(4450)⁺ may represent two narrower states, P_c(4440)⁺ and P_c(4457)⁺, and there's a new narrow state, P_c(4312)⁺. [PRL 122, 222001 (2019)]

State	M [MeV]	Г [MeV]	(95% CL)	R [%]
P _C (4312) ⁺	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$	(< 27)	$0.30 \pm 0.07 ^{+0.34}_{-0.09}$
$P_{C}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$	(< 49)	$1.11 \pm 0.33 \substack{+0.22 \\ -0.10}$
$P_{C}(4457)^{+}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$	(< 20)	$0.53 \pm 0.16 ^{+0.15}_{-0.13}$

 A confirmation of the LHCb observation by other experiments is therefore needed.

Y. Fang | Overview on exotica production at ATLAS

Study of $J/\psi p$ resonances in $\Lambda_b \to J/\psi p K^-$

- ▶ 4.9 fb⁻¹ of *pp* collision data at 7 TeV and 20.6 fb⁻¹ at 8 TeV
- Due to absence of hadron identification, select $J/\psi h_1 h_2$ candidates, where $h_1(h_2) = p, K, \pi$
- Perform simultaneous analysis of kinematically close Λ_b , B^0 , B^0_s decays
 - 1. $\Lambda_b \rightarrow J/\psi p K$ via various Λ^* or P_c states
 - 2. $B^0 \rightarrow J/\psi K\pi$ via various K^* or Z_C states
 - 3. $B_{\rm S}^{\rm 0} \rightarrow J/\psi {\it KK}$ via various f and ϕ states
 - 4. $B^{0}_{(s)} \rightarrow J/\psi \pi \pi$
- Simulation uses phase space events weighted by theoretically calculated matrix elements
- To suppress backgrounds from Λ^* , K^* , f, ϕ states, select events with $M(K\pi) > 1.55$ GeV
- Subsequent fits are performed in the CR-s (to determinine parameters of *B*-meson decays), SR (to determine parameters of Λ_b decays) and in global scope

Two pentaquark hypothesis

Fit with the hypothesis of two pentaquarks (with spin-parity 3/2 and 5/2⁺ for lighter and heavier pentaquark candidates, respectively) yields χ²/N_{dof} = 37.1/39 (*p*-value = 55.7%).

Pc signal parameters and yields from fit:

Parameter	Value	LHCb value [5]
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	-
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	-
$N(P_{c1}+P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	-
$\Delta \phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad	-
$m(P_{c1})$	$4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$	$4380\pm8\pm29~{\rm MeV}$
$\Gamma(P_{c1})$	$140^{+77}_{-50} (\text{stat})^{+41}_{-33} (\text{syst}) \text{ MeV}$	$205\pm18\pm86~{\rm MeV}$
$m(P_{c2})$	$4449^{+20}_{-29} (\text{stat})^{+18}_{-10} (\text{syst}) \text{ MeV}$	$4449.8 \pm 1.7 \pm 2.5~{\rm MeV}$
$\Gamma(P_{c2})$	$51^{+59}_{-48} \text{ (stat)}^{+14}_{-46} \text{ (syst) MeV}$	$39\pm5\pm19~{\rm MeV}$

- The pentaquark masses and widths obtained are consistent with the LHCb results within uncertainties.
- ► The fit with the two pentaquark masses and widths fixed to the LHCb values yields $\chi^2/N_{dof} = 49.0/43$ (*p*-value = 24.5%).

Four pentaquark hypothesis

Fit with the hypothesis of four pentaquarks with masses, widths and relative yields of narrow states fixed to LHCb values.

- The data description by this fit is also good ($\chi^2/N_{dof} = 37.1/42$).
- ATLAS data is consistent with LHCb results.

No pentaquark fits

- 1. Fit with default $\Lambda_b^0 \rightarrow J/\psi \Lambda^{*0}$ Λ_{h}^{0} 2. Fit with extended $J/\psi \Lambda^{*0}$ decay model decay model Events / 20 MeV 🔶 Data Events / 20 MeV 🔶 Data ATLAS Preliminary ATLAS Preliminary Total signal Total signa 300 S= 7, 8 TeV; 4.9, 20.6 fb-1 Lvs= 7, 8 TeV; 4.9, 20.6 fb⁻¹ Combinatorial BG Combinatorial B_a→J/ψKπ B.→J/wKa -5.59 < M(J/ψ,p,K) < 5.65 GeV 5.59 < M(J/ψ,p,K) < 5.65 GeV B_n→J/ψππ $B_0 \rightarrow J/\psi \pi \pi$ →J/vKK 250 B,→J/ψKK > Marrow B.→J/ψππ +I/wA* + refl $^{\circ} \rightarrow J/\psi \Lambda^* + refl.$ 200 200 150 150 100 100 50 50 4.2 4.4 4.6 4.2 4.4 4.6 48 M(J/ψ, h=p) [GeV] M(J/ψ, h_=p) [GeV] $\chi^2/N_{\rm dof} = 69.2/37$ $\chi^2 / N_{\rm dof} = 42.0/23$ $(p-value = 9.1 \times 10^{-3})$ $(p-value = 1.0 \times 10^{-3})$
 - The data description with model without pentaquarks is worse in comparison to models with pentaquarks.
 - Model without pentaquarks is still not statitically excluded.

Summary

- A selection of ATLAS results on exotica production was presented
 - 1. Measurement of the differential cross sections for the production of X(3872) state in the decay channel $J/\psi\pi^+\pi^-$
 - 2. Search for X(5568) decaying into $B_s^0 \pi^{\pm}$ with properties as reported by D0
 - No significant signal was found
 - 3. Study of $J/\psi p$ resonances in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays
 - Parameters of two pentaquark signals (540 events in total) are measured being consistent with LHCb results;
 - Four pentaquark hypothesis is also consistent with ATLAS data;
 - In the No-pentaquark hypothesis, data description is poor, though this hypothesis cannot be completely statistically excluded.
- Many B-physics measurements are only based on Run-1 dataset yet.
 - ► See more public results here: BPhysPublicResults
- Full Run-2 dataset is still to be fully exploited.

Search for P_c in $\Lambda_b \rightarrow J/\psi p K^-$ decays

18

Search for P_c in $\Lambda_b \rightarrow J/\psi p K^-$ decays Analysis of *B*-meson decays in CR-s

19