

Yuki Kamiya
Institute of Theoretical Physics,
Chinese Academy of Sciences

$\bar{K}N$ interaction from the hadron-hadron correlation in high-energy nuclear collisions

In collaboration with

Tetsuo Hyodo (Tokyo Metropolitan University)

Kenji Morita (Riken, Nishina center)

Akira Ohnishi (YITP, Kyoto University)

Wolfram Weise (Technical University of Munich)

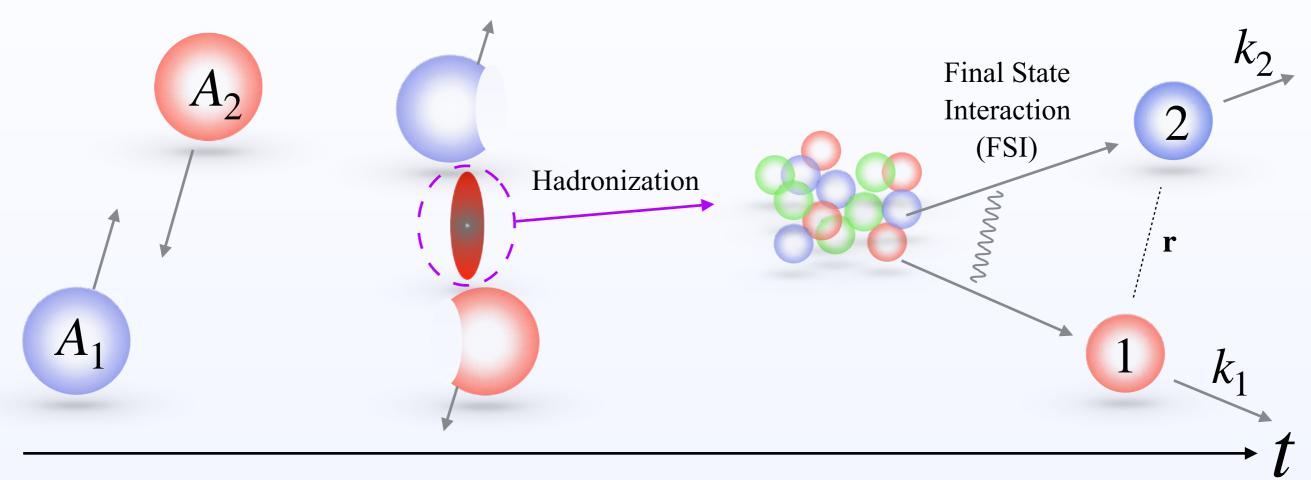
3rd EMMI workshop: Anti-matter, hyper matter and exotica, Wroclaw, Poland 2019/12/5

Contents

- Introduction: Hadron correlation in high energy nuclear collisions
- K^-p correlation function with coupled-channel chiral SU(3) potential
- Comparison with ALICE K^-p data
- Summary

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi and W. Weise, arXiv:1911.01041

High energy nuclear collision and FSI

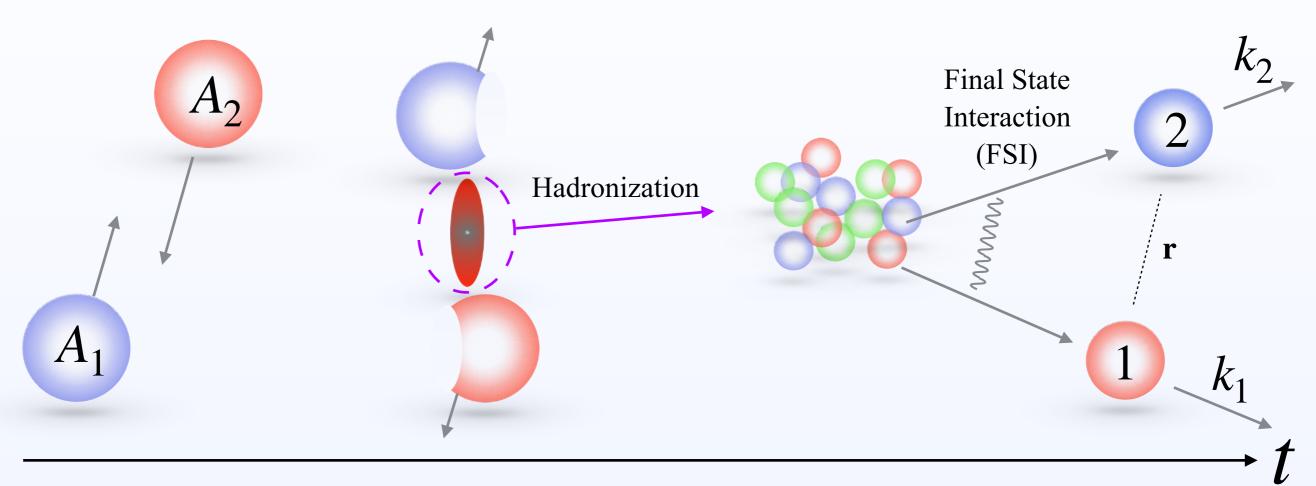


Hadron-hadron correlation

$$C_{12}(k_1, k_2) = \frac{N_{12}(k_1, k_2)}{N_1(k_1)N_2(k_2)}$$

$$= \begin{cases} 1 & \text{(w/o correlation)} \\ \text{Others (w/ correlation)} \end{cases}$$

High energy nuclear collision and FSI



Hadron-hadron correlation

• Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990)

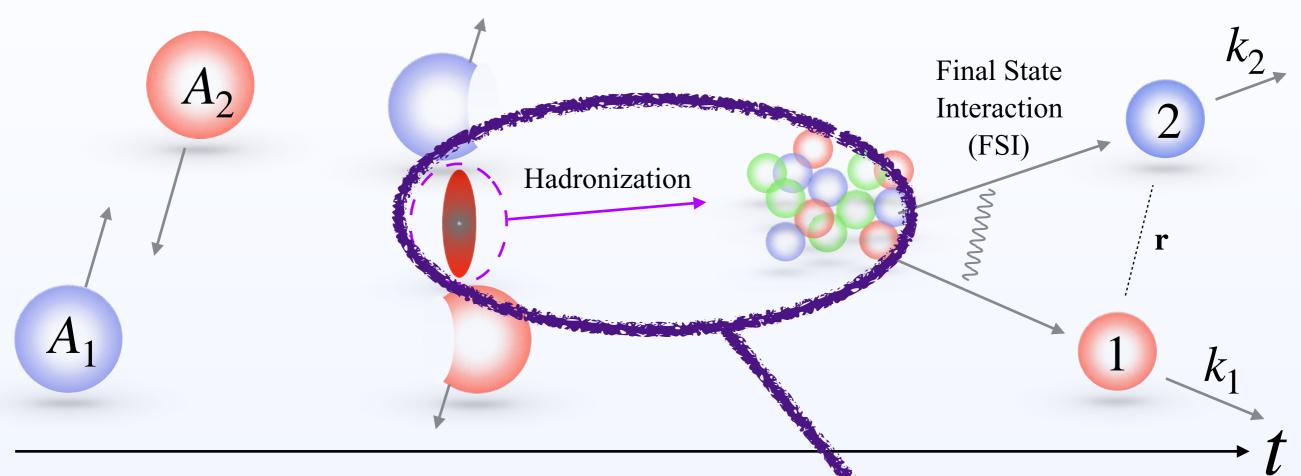
$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \ S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2$$

$$\mathbf{q} = \frac{m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2}{(m_1 + m_2)}$$

 $S(\mathbf{r})$: Source function

 $\varphi^{(-)}(\mathbf{q},\mathbf{r})$: Relative wave function

High energy nuclear collision and FSI



Hadron-hadron correlation

• Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990)

$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \ S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2$$

$$\mathbf{q} = \frac{(m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)}{(m_1 + m_2)}$$

 $S(\mathbf{r})$: Source function

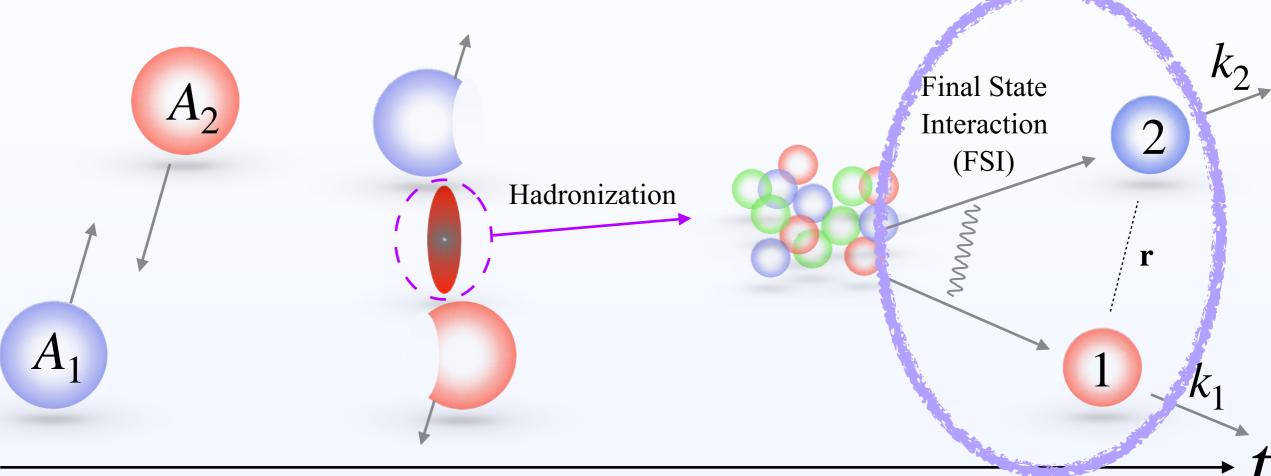
 $\varphi^{(-)}({f q},{f r})$: Relative wave function

• Depends on ...

Collision detail (Ai, energy, centrality)

• Including information of... size of hadron source, time dependence, weight...

High energy nuclear collision and FSI



Hadron-hadron correlation

• Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990)

$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} |S(\mathbf{r})| \varphi^{(-)}(\mathbf{q}, \mathbf{r})|^2$$

$$\mathbf{q} = \frac{m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2}{(m_1 + m_2)}$$

 $S(\mathbf{r})$: Source function

 $\varphi^{(-)}(\mathbf{q},\mathbf{r})$: Relative wave function

• Depends on ...

Interaction (strong and Coulomb)

quantum statistics (Fermion, boson)

• How to study the hadron interaction

$$C(\mathbf{q}) \simeq \int d^3\mathbf{r} \, \underline{S(\mathbf{r})} |\underline{\varphi^{(-)}(\mathbf{q},\mathbf{r})}|^2$$

 $S(\mathbf{r})$: Source function

 $\varphi^{(-)}({f q},{f r})$: Relative wave function

- Study on hadron source; $S(\mathbf{r})$
 - Source size, source shape,...
- Study on interaction; $\varphi^{(-)}(\mathbf{q}, \mathbf{r})$
 - Wave function is distorted by the final state interaction of hadron pair
 - Systems with less known interaction (e.g. $\Lambda\Lambda$, $N\Xi$, $N\Omega$, $\bar{K}N$)
 - Advantages; rare opportunity to investigate interaction of ...
 - short-lived hadrons (strangeness system, anti-baryons)
 - low-energy (low-momentum) region

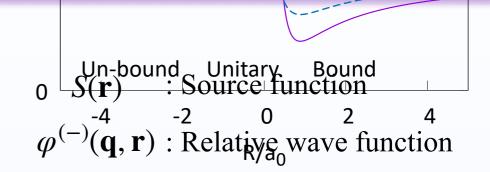
• How to study the hadron interaction

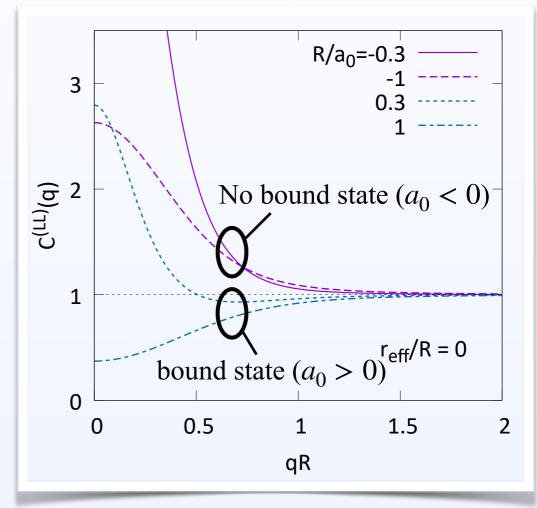
$$C(\mathbf{q}) \simeq \int d^3\mathbf{r} |S(\mathbf{r})| |\varphi^{(-)}(\mathbf{q},\mathbf{r})|^2$$

• Lednicky-Lyuboshits (LL) formula R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).

$$C(q) = 1 + \left[\frac{|\mathcal{F}(q)|^2}{2R^2} F_3\left(\frac{r_{\text{eff}}}{R}\right) + \frac{2\text{Re }\mathcal{F}(q)}{\sqrt{\pi}R} F_1(x) - \frac{\text{Im }\mathcal{F}(q)}{R} F_2(x) \right]$$

- Static Gaussian source
- Asymptotic wave fcn. with effective range expansion
- C(q) is sensitive to R/a_0
 - R : Gaussian source size
 - a_0 : scattering length $(\equiv -\mathcal{F}(q=0))$



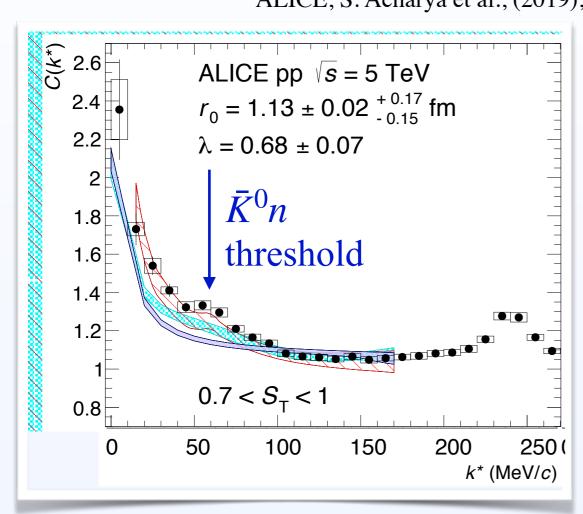


Morita, et al., arXiv:1908.05414

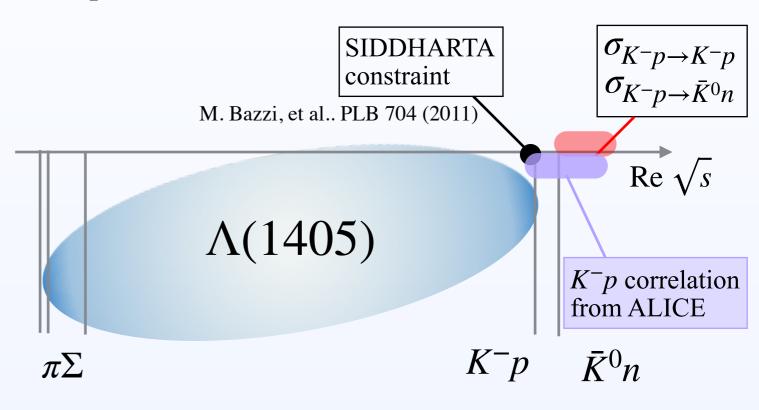
Powerful tool to study hadron interaction in low energy region

K⁻p correlation

► K⁻p correlation: measured by ALICE collab. ALICE, S. Acharya et al., (2019), 1905.13470.



• Experimental data on $\bar{K}N$ int.

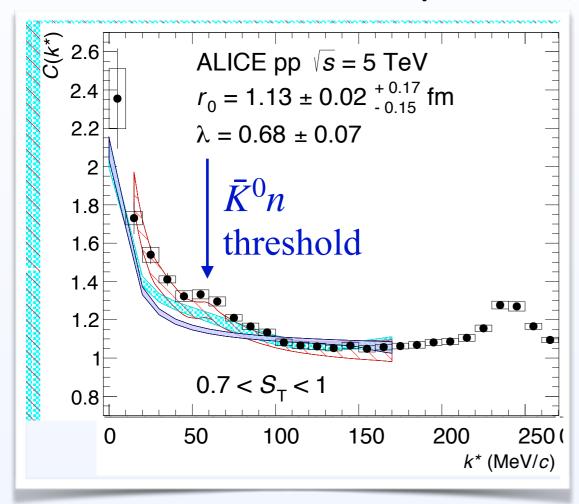


- High-multiplicity events of pp collisions
- Strong enhancement (C > 1) at small momenta \Longrightarrow Coulomb interaction
- Deviation from with pure Coulomb case ==> Strong interaction
- Characteristic cusp at the \bar{K}^0n threshold $(k = 58 \text{ MeV}) ==> \underline{\text{isospin sym. breaking }}$

K⁻p correlation

 K^-p correlation: measured by ALICE collab.

ALICE, S. Acharya et al., (2019), 1905.13470.



Kyoto Model

Ohnishi et al. NPA 954 (2016) Cho, et al., PPNP 95 (2017)

- Interaction: Based on Chiral SU(3) dynamics Ikeda, Hyodo, Weise, NPA881 (2012)
- Calculated with
 - Coulomb + Strong int.
 - $\bar{K}N$ $(K^-p + \bar{K}^0n)$ w/ isospin ave. mass

Jülich Model

Haidenbauer NPA 981 (2018)

- Interaction: Jülich meson exchange model Refitted ver. of Müller-Groeling, et al., NPA 513 (1990)
- Calculated with
 - Coulomb (Gamow) + Strong int.
 - $\bar{K}N + \pi\Sigma + \pi\Lambda$ with particle mass

We update the Kyoto model to include

- Coupled-channel effect
- Coulomb interaction
- threshold energy difference of isospin multiplets

Contents

- Introduction: Hadron correlation in high energy nuclear collisions
- \circ K^-p correlation function with coupled-channel chiral SU(3) potential
- Comparison with ALICE K^-p data
- Summary

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi and W. Weise, arXiv:1911.01041

• Koonin-Pratt formula for K^-p correlation

Koonin-Pratt formula :
$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} |S(\mathbf{r})| |\varphi^{(-)}(\mathbf{q}; \mathbf{r})|^2$$

S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990)

- Consider only *s*-wave interaction
- non-identical particles

R. Lednicky, et. al. Phys. At. Nucl. 61 (1998) Haidenbauer NPA 981 (2018)

$$C_{K^{-}p}(\mathbf{q}) = \int d^{3}\mathbf{r} \ S_{K^{-}p}(\mathbf{r}) \left[\frac{|\varphi^{C,\text{full}}(\mathbf{q};\mathbf{r})|^{2} - |\varphi^{C}_{0}(qr)|^{2} + |\psi^{C,(-)}_{K^{-}p}(q;r)|^{2}}{\sqrt{1 + |\varphi^{C}_{K^{-}p}(q;r)|^{2}}} \right] + \sum_{j \neq i} \omega_{j} \int d^{3}\mathbf{r} \ S_{j}(\mathbf{r}) |\psi^{C,(-)}_{j}(q;r)|^{2} dr$$

Free Coulomb wave $(l \ge 1 \text{ waves})$ func

Scattering *s*-wave function with Coulomb int.

Coupled-channel source contribution

- ω_i : weight of channel j
- $\psi_j^{(-)}(q;r)$: channel j component of wave function with channel i outgoing boundary condition

How coupled-channel effect contributes on correlation

$$C_{K^{-}p}(\mathbf{q}) = \int d^{3}\mathbf{r} \ S_{K^{-}p}(\mathbf{r}) \left[|\varphi^{C,\text{full}}(\mathbf{q};\mathbf{r})|^{2} - |\phi_{0}^{C}(qr)|^{2} + |\psi_{K^{-}p}^{C,(-)}(q;r)|^{2} \right] + \sum_{j \neq K^{-}p} \omega_{j} \left[d^{3}\mathbf{r} \ S_{j}(\mathbf{r}) |\psi_{j}^{C,(-)}(q;r)|^{2} \right]$$

(1) Modification of wave function of observed channel: $\psi_{K^-p}^{C,(-)}$

$$\begin{bmatrix} T + \begin{pmatrix} V_{11} & V_{12} & \cdots \\ V_{21} & V_{22} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \end{bmatrix} \begin{pmatrix} \psi_{K^-p} \\ \psi_{\bar{K}^0n} \\ \psi_{\pi^-\Sigma^+} \\ \vdots \end{pmatrix} = E \begin{pmatrix} \psi_{K^-p} \\ \psi_{\bar{K}^0n} \\ \psi_{\pi^-\Sigma^+} \\ \vdots \end{pmatrix}$$

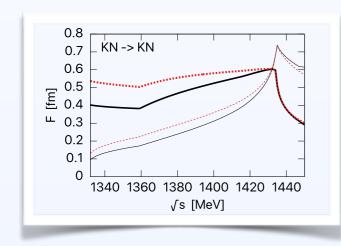
(2) Contribution from coupled-channel hadron source: $S_{j \neq K^-p}$

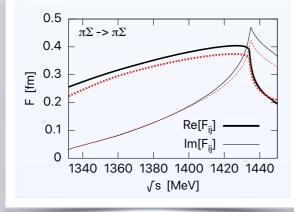
• Chiral SU(3) based $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential Miyahara, Hyodo, Weise, PRC 98 (2018)

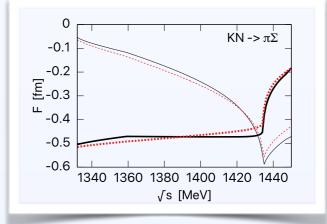
- Constructed based on the amplitude with chiral SU(3) dynamics Ikeda, Hyodo, Weise, NPA881 (2012)
- Coupled-channel, energy dependent as

$$V_{ij}^{\text{strong}}(r, E) = e^{-(b_i/2 + b_j/2)r^2} \sum_{\alpha=0}^{\alpha_{\text{max}}} K_{\alpha, ij} (E/100 \text{ MeV})^{\alpha}$$

• Constructed to reproduce the chiral SU(3) amplitude around the $\bar{K}N$ sub-threshold region







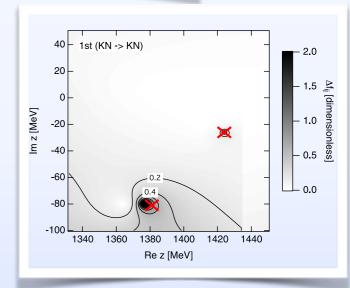
• Reproduce two pole structure of $\Lambda(1405)$

High-mass pole : 1424 - 27*i*

Low-mass pole : 1380 - 81*i*

Original chiral SU(3) : 1424 - 26*i*

1381 - 81*i*



• Chiral SU(3) based $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ potential Miyahara, Hyodo, Weise, PRC 98 (2018)

- Constructed based on the amplitude with chiral SU(3) dynamics Ikeda, Hyodo, Weise, NPA881 (2012)
- Coupled-channel, energy dependent as

$$V_{ij}^{\text{strong}}(r, E) = e^{-(b_i/2 + b_j/2)r^2} \sum_{\alpha=0}^{\alpha_{\text{max}}} K_{\alpha, ij} (E/100 \text{ MeV})^{\alpha}$$

• Constructed to reproduce the chiral SU(3) amplitude around the $\bar{K}N$ sub-threshold region

Coupled-channel Schrödinger eq.

$$\begin{pmatrix} -\frac{\nabla^2}{2\mu_1} + V_{11}(r) & V_{12}(r) & \cdots & V_{1n}(r) \\ V_{21}(r) & -\frac{\nabla^2}{2\mu_2} + V_{22}(r) + \Delta_2 & \cdots & V_{2n}(r) \\ \vdots & \vdots & \ddots & \vdots \\ V_{n1}(r) & V_{n2}(r) & \cdots & -\frac{\nabla^2}{2\mu_n} + V_{nn}(r) + \Delta_n \end{pmatrix} \Psi(q_1, r) = E\Psi(q_1, r),$$

$$E = \frac{q_1^2}{2\mu_1}$$
 $V_{ij} = V_{ij}^{\text{strong}} \ (+V^{\text{Coulomb}})$ Δ_i ; threshold energy diff.

Channels

• Particle basis: K^-p , \bar{K}^0n , $\pi^+\Sigma^-$, $\pi^0\Sigma^0$, $\pi^-\Sigma^+$, $\pi^0\Lambda$ (n=6)

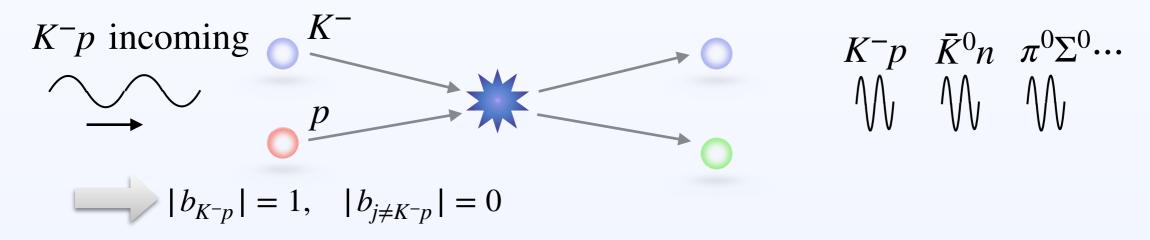
Coupled-channel boundary condition (b.c.)

R. Lednicky, et. al. Phys. At. Nucl. 61 (1998)

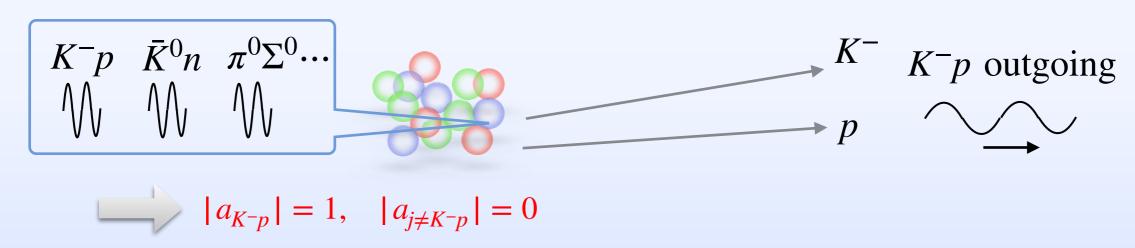
Asymptotic waves

open channels :
$$\chi_j^{(C)}(r,q) \to a_j$$
(outgoing wave) + b_j (incoming wave) closed channels : $\chi_i^{(C)}(r,q) \to a_j$ (diverg . solution) + b_j (converg . solution)

• <u>Scattering problem</u>; Incoming wave b.c.

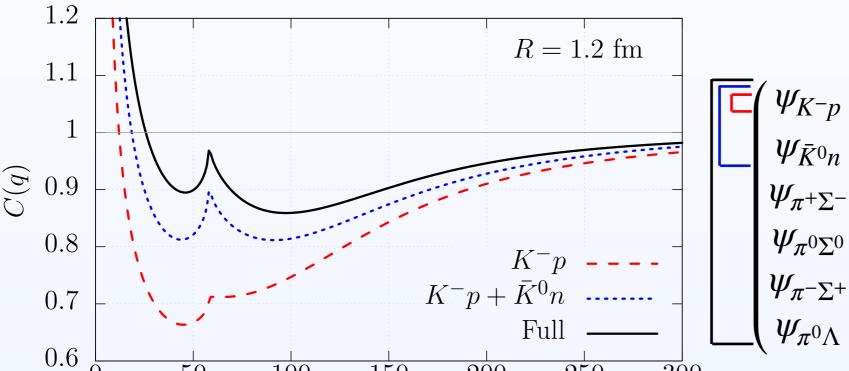


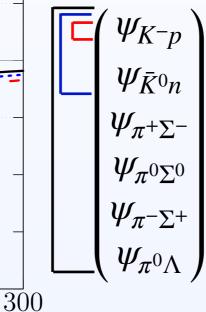
• Correlation fcn. Outgoing wave b.c.



${}^{\circ}K^{-}p$ correlation in particle basis w/ Coulomb

$$C_{K^{-}p}(\mathbf{q}) = \int d^{3}\mathbf{r} \ S(\mathbf{r}) \left[|\varphi^{C,\text{full}}(\mathbf{q},\mathbf{r})|^{2} - |j_{0}^{C}(qr)|^{2} + |\psi_{K^{-}p}^{C,(-)}(q,r)|^{2} \right] + \sum_{j} \int d^{3}\mathbf{r} \ S(\mathbf{r}) |\psi_{j}^{C,(-)}(q,r)|^{2}$$





- Assumptions on hadron source
 - $S_i(r) \propto exp(-r^2/4R^2)$
 - $\omega_i = 1$

Coupled-channel effects on K^-p correlation function

150

q [MeV]

100

• C(q) calculated with K^-p , $K^-p + \bar{K}^0n$, and all of coupled-channel components

250

• Inclusion of $\bar{K}^0 n ==>$ enhance correlation and the cusp structure

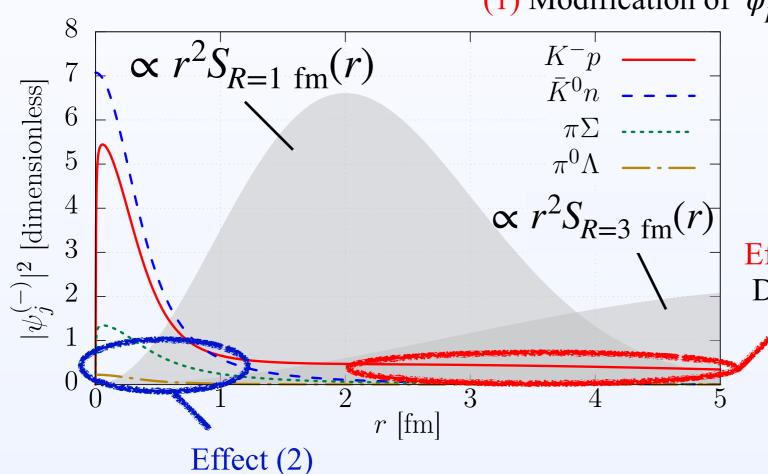
200

• Inclusion of decay channels ==> non-negligible enhancement

Coupled-channel effect and source size

$$C_{K-p}(\mathbf{q}) = \int d^3\mathbf{r} \ S_{K-p}(\mathbf{r}) \left[|\varphi^{C,\text{full}}(\mathbf{q};\mathbf{r})|^2 - |\phi_0^C(qr)|^2 + |\psi_{K-p}^{C,(-)}(q;r)|^2 \right] + \sum_{j \neq K-p} \omega_j \left[d^3\mathbf{r} \ S_j(\mathbf{r}) |\psi_j^{C,(-)}(q;r)|^2 \right]$$

(2) C.c. source contribution



Effect (1)

Does not depends on the source size R

$$\psi_{K^-p}^{(-)} \to \frac{1}{2iq_1r} \left(e^{iq_1r} - \mathcal{S}_{11}^{\dagger} e^{-iq_1r} \right)$$
(w/o Coulomb)

becomes moderate for larger source

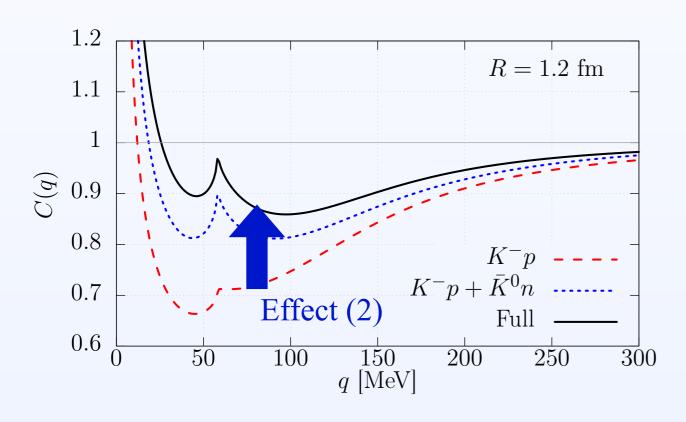
• For the larger source, effect (2) gives just a small enhancement.

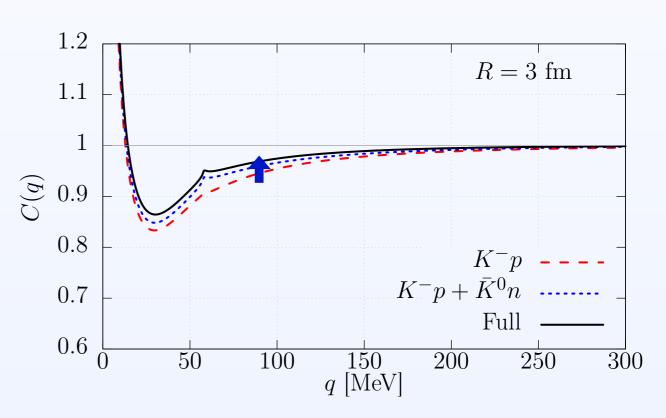
Coupled-channel effect and source size

$$C_{K^{-}p}(\mathbf{q}) = \int d^{3}\mathbf{r} \ S_{K^{-}p}(\mathbf{r}) \left[|\varphi^{C,\text{full}}(\mathbf{q};\mathbf{r})|^{2} - |\phi_{0}^{C}(qr)|^{2} + |\psi_{K^{-}p}^{C,(-)}(q;r)|^{2} \right] + \sum_{j \neq K^{-}p} \omega_{j} \left[d^{3}\mathbf{r} \ S_{j}(\mathbf{r}) |\psi_{j}^{C,(-)}(q;r)|^{2} \right]$$

(1) Modification of $\psi_{K^-p}^{C,(-)}$

(2) C.c. source contribution



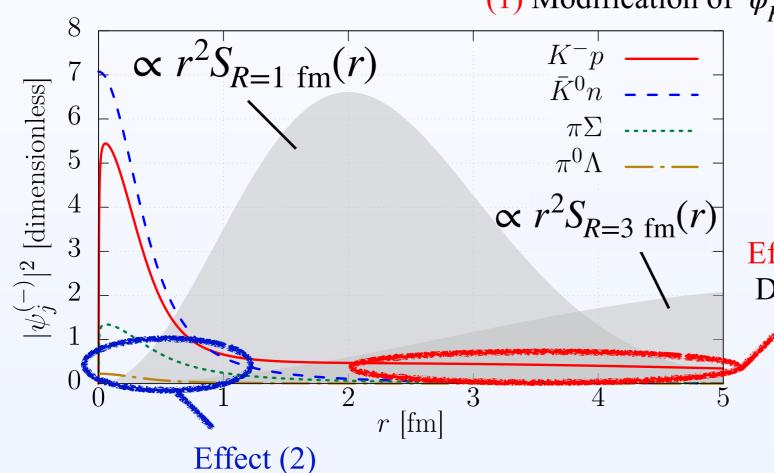


• For the larger source, effect (2) gives just a small enhancement.

Coupled-channel effect and source size

$$C_{K-p}(\mathbf{q}) = \int d^3\mathbf{r} \ S_{K-p}(\mathbf{r}) \left[|\varphi^{C,\text{full}}(\mathbf{q};\mathbf{r})|^2 - |\phi_0^C(qr)|^2 + |\psi_{K-p}^{C,(-)}(q;r)|^2 \right] + \sum_{j \neq K-p} \omega_j \left[d^3\mathbf{r} \ S_j(\mathbf{r}) |\psi_j^{C,(-)}(q;r)|^2 \right]$$

(2) C.c. source contribution



Effect (1)

Does not depends on the source size R

$$\psi_{K^-p}^{(-)} \rightarrow \frac{1}{2iq_1r} \left(e^{iq_1r} - \mathcal{S}_{11}^{\dagger} e^{-iq_1r} \right)$$
(w/o Coulomb)

becomes moderate for larger source

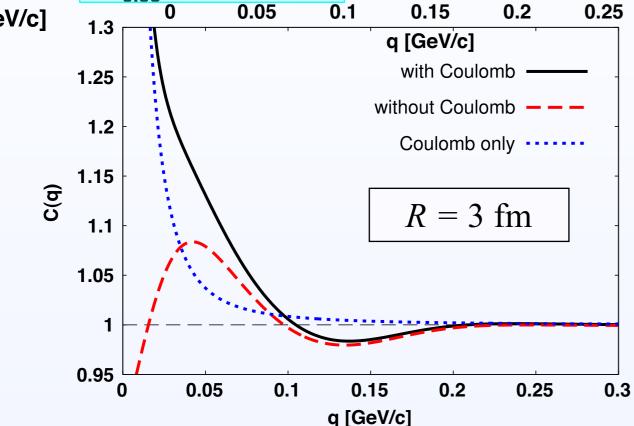
• For the larger source, effect (2) gives just a small enhancement.

Ochparison with previous result

KN (I=0)

5

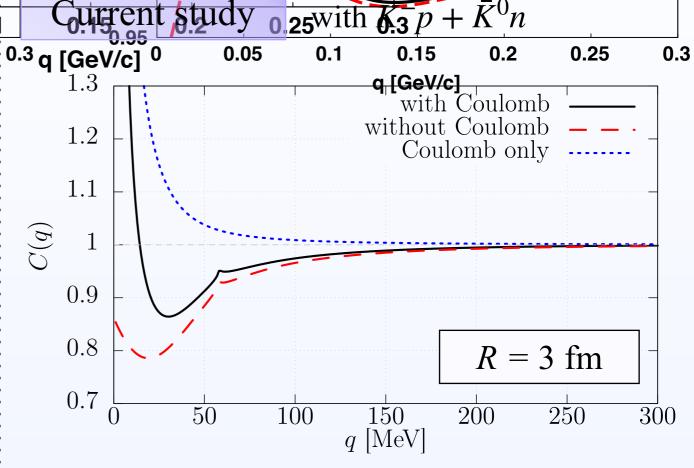
0.2 revious study S. Cho et al. KPRN 10.95 (2017) 0.1



- $\bar{K}N (I = 0, 1)$ single channel potential
- <u>Approximate</u> outgoing boundary condition (Neglect coupling to $\pi\Sigma$ and $\pi\Lambda$)

$$\psi_{K^{-}p}(r) \to \frac{1}{2iqr} \left[e^{iqr} - \tilde{s}_{K^{-}p}^{-1} e^{-iqr} \right]$$

$$\tilde{s}_{K^{-}p} = 2 \left(s_0^{-1} + s_1^{-1} \right)^{-1}, \quad s_I = e^{2i\delta_I}$$



- $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ coupled channel potential
- Full outgoing boundary condition

$$\psi \to \frac{1}{2iqr} [e^{iqr} - \mathcal{S}^{\dagger}_{K^{-}pK^{-}p} e^{-iqr}] e_{K^{-}p}$$

$$-\sqrt{\frac{\mu_{K^{-}p}q}{\mu_{\bar{K}^{0}n}q_{\bar{K}^{0}n}}} \mathcal{S}^{\dagger}_{K^{-}p\bar{K}^{0}n} e^{-iq_{\bar{K}^{0}n}r} e_{\bar{K}^{0}n}$$

Comparison with previous result

Previous study S. Cho et al., PPNP 95 (2017)

 $\bar{K}N$ single channel potential Miyahara and Hyodo, PRC93, 015201 (2016).

$$[T_{\text{kinetic}} + V_{\text{single}}^{I}] \ \psi_{\bar{K}N} = E\psi_{\bar{K}N}$$

Integrated out

Current study

KN- $\pi\Sigma$ - $\pi\Lambda$ coupled channel potential Miyahara et al., PRC98, 025201 (2018).

$$\begin{bmatrix} T + \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{bmatrix} \begin{bmatrix} \psi_{\bar{K}N} \\ \psi_{\pi\Sigma} \\ \psi_{\pi\Lambda} \end{bmatrix} = E \begin{pmatrix} \psi_{\bar{K}N} \\ \psi_{\pi\Sigma} \\ \psi_{\pi\Lambda} \end{pmatrix}$$

Incoming wave boundary condition

Previous study S. Cho et al., PPNP 95 (2017)

KN single channel potential Miyahara and Hyodo, PRC93, 015201 (2016).

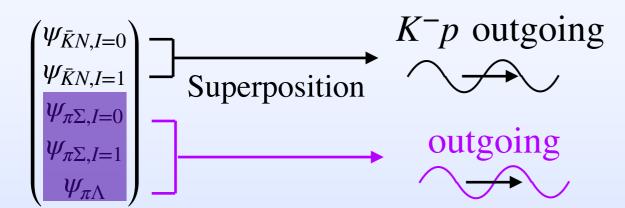
$$[T_{\text{kinetic}} + V_{\text{single}}^{I}] \ \psi_{\bar{K}N} = E\psi_{\bar{K}N}$$

Integrated out

<u>Approximate</u> outgoing boundary condition (Neglect coupling to $\pi\Sigma$ and $\pi\Lambda$)

$$\psi_{K^{-}p}(r) \to \frac{1}{2iqr} \left[e^{iqr} - \tilde{s}_{K^{-}p}^{-1} e^{-iqr} \right]$$

$$\tilde{s}_{K^{-}p} = 2 \left(s_0^{-1} + s_1^{-1} \right)^{-1}, \quad s_I = e^{2i\delta_I}$$



Current study

 $\psi_{\pi^0\Lambda}$

 $KN-\pi\Sigma-\pi\Lambda$ coupled channel potential Miyahara et al., , PRC98, 025201 (2018).

$$\begin{bmatrix} T + \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{bmatrix} \begin{bmatrix} \psi_{\bar{K}N} \\ \psi_{\pi\Sigma} \\ \psi_{\pi\Lambda} \end{bmatrix} = E \begin{pmatrix} \psi_{\bar{K}N} \\ \psi_{\pi\Sigma} \\ \psi_{\pi\Lambda} \end{pmatrix}$$

Incoming wave boundary condition

• *Full* outgoing boundary condition

$$\psi \rightarrow \frac{1}{2iqr} [e^{iqr} - \mathcal{S}^{\dagger}_{K^{-}pK^{-}p} e^{-iqr}] e_{K^{-}p}$$

$$-\sqrt{\frac{\mu_{K^{-}p}q}{\mu_{\bar{K}^{0}n}q_{\bar{K}^{0}n}}} \mathcal{S}^{\dagger}_{K^{-}p\bar{K}^{0}n} e^{-iq_{\bar{K}^{0}n}r} e_{\bar{K}^{0}n}$$

$$\begin{pmatrix} \psi_{K^{-}p} \\ \psi_{\bar{K}^{0}n} \\ \psi_{\pi^{+}\Sigma^{-}} \\ \psi_{\pi^{0}\Sigma^{0}} \\ \psi_{\pi^{0}\Sigma^{+}} \end{pmatrix} \xrightarrow{\text{Superposition}} K^{-}p \text{ outgoing}$$
Superposition

Previous study S. Cho et al., PPNP 95 (2017)

 $\bar{K}N$ single channel potential Miyahara and Hyodo, PRC93, 015201 (2016).

$$[T_{\text{kinetic}} + V_{\text{single}}^{I}] \ \psi_{\bar{K}N} = E \psi_{\bar{K}N}$$

Current study

KN- $\pi\Sigma$ - $\pi\Lambda$ coupled channel potential Miyahara et al., PRC98, 025201 (2018).

$$T + \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} \psi_{\bar{K}N} \\ \psi_{\pi\Sigma} \\ \psi_{\pi\Lambda} \end{pmatrix} = E \begin{pmatrix} \psi_{\bar{K}N} \\ \psi_{\pi\Sigma} \\ \psi_{\pi\Lambda} \end{pmatrix}$$

Two results differ so much

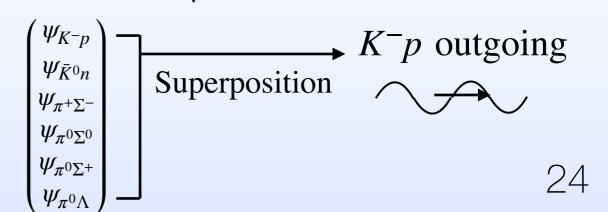
- - ==> Coupling to decay channels are not negligible
 - $\psi_{K^-p}(r)$ Boundary condition should be taken carefully

$$\tilde{\mathcal{S}}_{K^-p} = 2\left(\mathcal{S}_0^{-1} + \mathcal{S}_1^{-1}\right)^{-1}, \quad \mathcal{S}_I = e^{2i\delta_I}$$

$$\begin{pmatrix} \psi_{\bar{K}N,I=0} \\ \psi_{\bar{K}N,I=1} \\ \psi_{\pi\Sigma,I=0} \\ \psi_{\pi\Sigma,I=1} \end{pmatrix} \xrightarrow{\text{Superposition}} K^-p \text{ outgoing}$$

$$\text{Superposition}$$

$$\text{outgoing}$$



 $\overline{\mu_{ar{K}^0n}q_{ar{K}^0n}}$ $\delta_{K^-par{K}^0n}$

condition

 $[^{iqr}]e_{K^-p}$

Contents

- Introduction: Hadron correlation in high energy nuclear collisions
- K^-p correlation function with coupled-channel chiral SU(3) potential
- Comparison with ALICE K^-p data
- Summary

Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi and W. Weise, arXiv:1911.01041

Source function parameters

We do not have enough information for S(r)...

$$C_{K-p}(q) = \int d^3\mathbf{r} \ S(\mathbf{r}) \left[|\varphi^{C,\text{full}}(\mathbf{q},\mathbf{r})|^2 - |j_0^C(qr)|^2 + |\psi_{K-p}^{C,(-)}(q,r)|^2 \right] + \sum_j \omega_i \int d^3\mathbf{r} \ S(\mathbf{r}) |\psi_j^{C,(-)}(q,r)|^2 \right]$$

- Assumptions
 - Spherical gaussian source: $S_i(r) = S_R(r) \propto \exp(-r^2/4R^2)$
 - $\bullet \ \omega_{\bar{K}^0N} = \omega_{\pi^0\Lambda} = 1$

- Free parameters for source function
 - Source size: $R (\sim 1 \text{ fm})$ -

- Normal size for *pp* collision
- Source weight of $\pi\Sigma$ channel : $\omega_{\pi\Sigma}$ (~ 2)

Statistical model estimate

Other fitting parameters

$$C_{\text{fit}}(q) = \mathcal{N}[1 + \lambda \{C_{K^{-p}}(q) - 1\}]$$

Normalization

$$N \sim 1$$

• Pair purity parameter

$$\lambda_{\rm exp} = 0.64 \pm 0.06$$

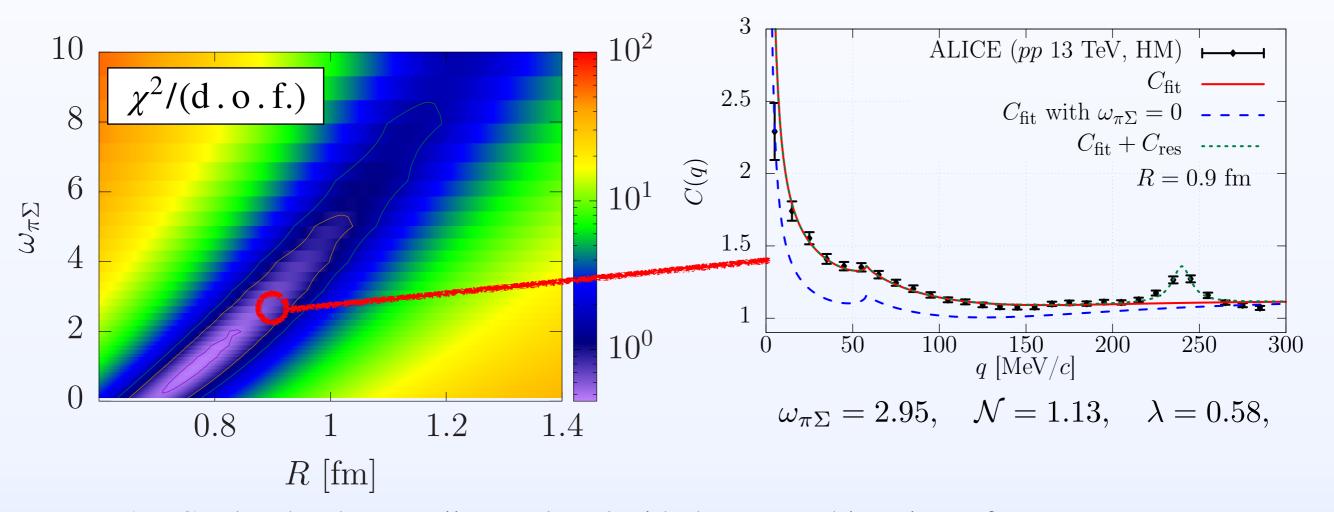
Monte calro simulation by experimental group

ALICE, S. Acharya et al., (2019), 1905.13470.

Fitting result

- Fitting function $C_{\rm fit}(q) = \mathcal{N}[1 + \lambda \{C_{K^-p}(q) 1\}]$
- Fitting range: q < 120 MeV/c

$$C_{K^-p}(q) = \sum_{j} \omega_j \int d^3 \mathbf{r} \ S(\mathbf{r}) |\Psi_j^{C,(-)}(q,r)|^2 \right]$$



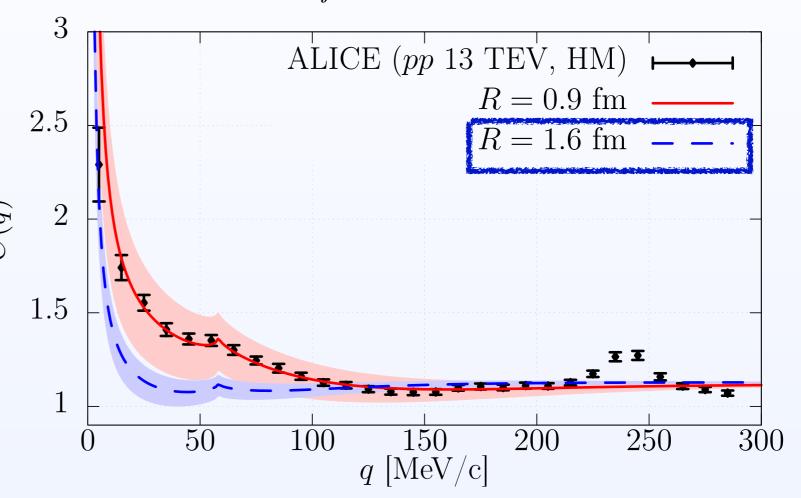
- ALICE data has been well reproduced with the reasonable values of parameters.
- C.c. source contribution is essential to reproduce the data.

Correlation in larger source system

$$C_{\text{fit}}(q) = \mathcal{N}[1 + \lambda \{C_{K^-p}(q) - 1\}]$$

$$C_{K-p}(q) = \sum_{j} \omega_{j} \int d^{3}\mathbf{r} \ S(\mathbf{r}) |\Psi_{j}^{C,(-)}(q,r)|^{2}$$

- * Same values for \mathcal{N} , λ , ω
- * Shadow: $0.5 < \omega_{\pi\Sigma} < 5$



- Contribution from the coupled-channel source is weaker,
 - Moderate cusp structure
 - Weak source weight $(\omega_{\pi\Sigma})$ dependence

Summary

- To measure hadron-hadron correlation function in high energy nuclear is a powerful tool to study the (multi-)strangeness system.
- Based on Koonin-Pratt formula, we newly constructed the calculation method to include
 - Coulomb interaction,
 - coupled-channel effect,
 - threshold energy difference.
- Employing the realistic chiral SU(3) based coupled-channel potential, ALICE K^-p data is well reproduced with the reasonable source function parameters.
- Coupled-channel effect exists various hadron-hadron systems.
 - —> Careful treatment is needed for the detailed analysis.

Coupled-channel boundary condition R. Lednicky, et. al. Phys. At. Nucl. 61 (1998)

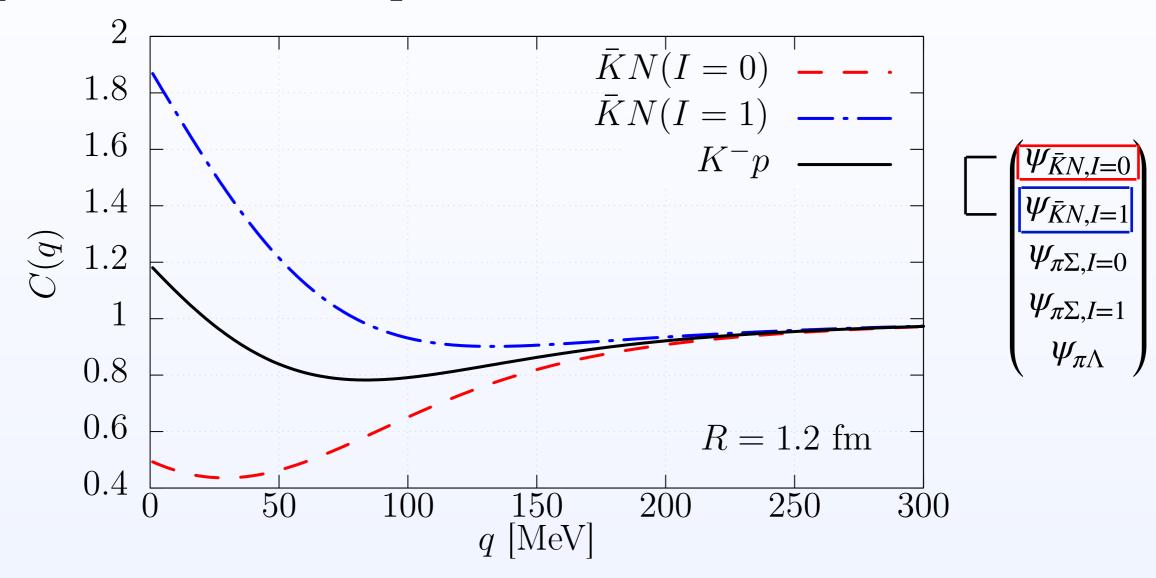
- w/o Coulomb int.
- w/o open channel (coupling only to closed channels)
- Scattering problem; In-coming wave boundary condition

$$\Psi^{\text{incoming b.c.}} \rightarrow \begin{pmatrix} \frac{1}{2iq_1r}e^{-iq_1r} - \frac{\mathcal{S}_{11}}{2iq_1r}e^{iq_1r} \\ -\sqrt{\frac{\mu_1q_1}{\mu_2q_2}} \frac{\mathcal{S}_{12}}{2iq_2r}e^{iq_2r} \\ \vdots \text{Outgoing} \end{pmatrix}$$

Correlation fcn. Out-going wave boundary condition

$$\Psi^{\text{outgoing b.c.}} \rightarrow \begin{pmatrix} \frac{1}{2iq_1r}e^{iq_1r} - \frac{\mathcal{S}_{11}^{\dagger}}{2iq_1r}e^{-iq_1r} \\ -\sqrt{\frac{\mu_1q_1}{\mu_2q_2}}\frac{\mathcal{S}_{12}^{\dagger}}{2iq_2r}e^{-iq_2r} \\ \vdots & \text{Incoming} \end{pmatrix}$$

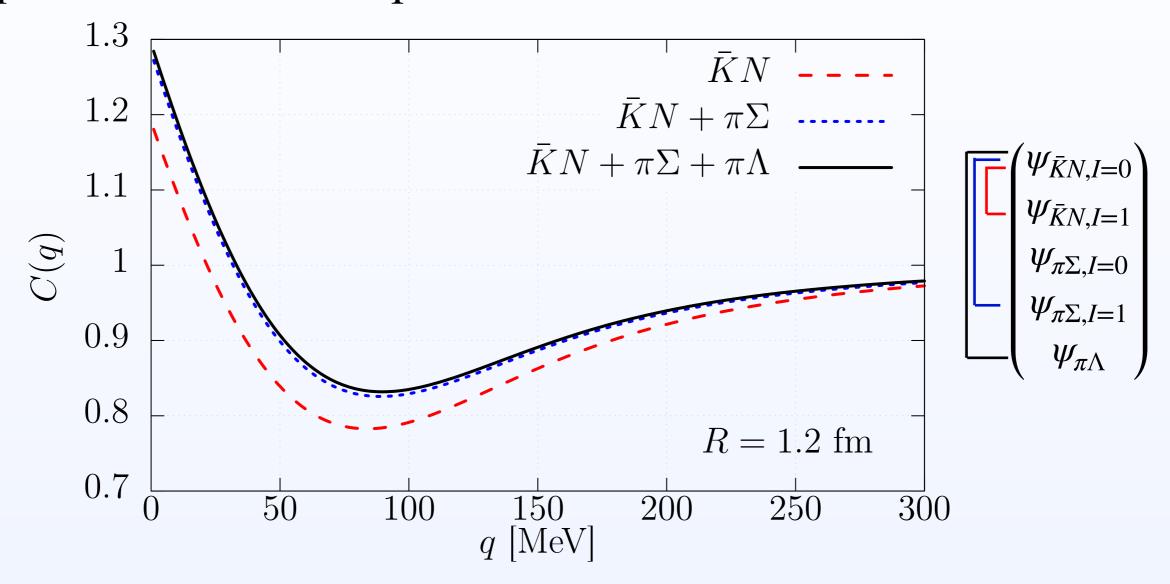
${}^{\circ}K^{-}p$ correlation in isospin basis w/o Coulomb



- C(q) calculated only with $\bar{K}N(K^-p + \bar{K}^0n)$ component with R = 1.2 fm
- Re $a_0^{I=0} > 0 \Rightarrow C_{\bar{K}N}^{I=0} < 1$, Re $a_0^{I=1} < 0 \Rightarrow C_{\bar{K}N}^{I=1} > 1$ at small q

•
$$C_{K^-p}(q) = (C_{\bar{K}N}^{I=0} + C_{\bar{K}N}^{I=1})/2$$

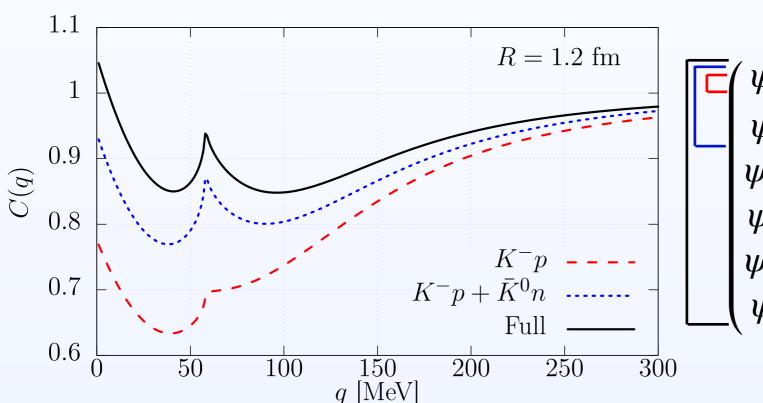
${}^{\circ}K^{-}p$ correlation in isospin basis w/o Coulomb

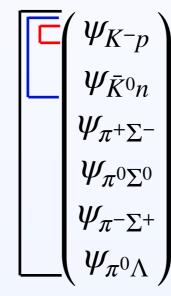


- Coupling to $\pi\Sigma$: Enhancement
- Coupling to $\pi\Lambda$: Negligible enhancement

${}^{\circ}K^{-}p$ correlation in particle basis w/o Coulomb

$$C_{K^{-}p}(q) = \int d^3\mathbf{r} \ S(\mathbf{r}) \left[|\varphi^{\text{full}}(\mathbf{q}; \mathbf{r})|^2 - |j_0(qr)|^2 + |\psi_{K^{-}p}^{(-)}(q; r)|^2 \right] + \sum_j \int d^3\mathbf{r} \ S(\mathbf{r}) |\psi_j^{(-)}(q; r)|^2 \right]$$





- Assumptions on hadron source
 - $S_j(r) \propto exp(-r^2/4R^2)$
 - $\omega_i = 1$

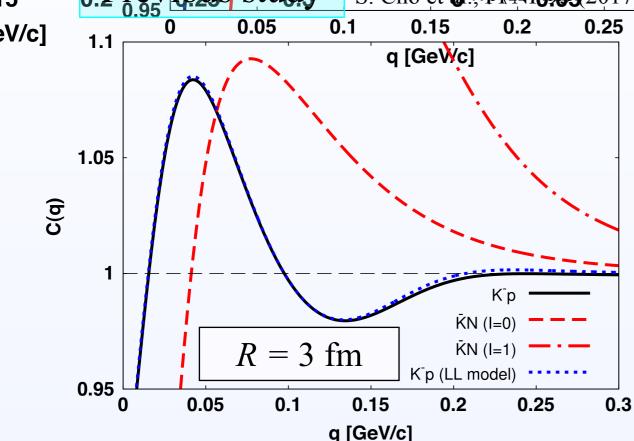
- Coupled-channel effects on K^-p correlation function
 - C(q) calculated with K^-p , $K^-p + \bar{K}^0n$, and all of coupled-channel components
 - Inclusion of $\bar{K}^0 n ==>$ enhance correlation and the cusp structure
 - Inclusion of decay channels ==> non-negligible enhancement

• Comparison with previous result

KN (I=0)

5

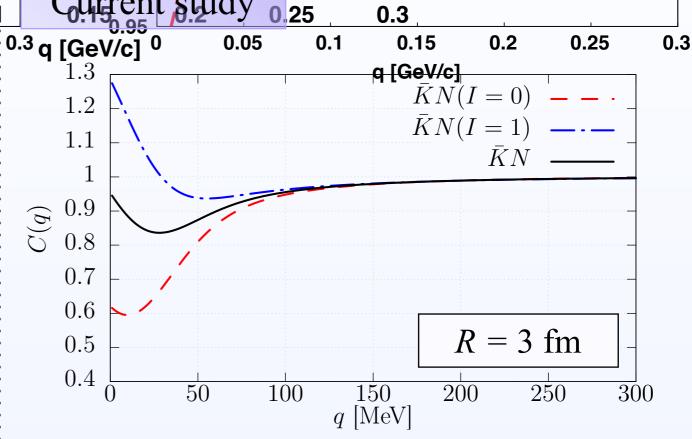
6.2 revious study S. Cho et a. KPRNR0905 (2017) 0.1



- $\bar{K}N$ single channel potential
- Approximate outgoing boundary condition (Neglect coupling to $\pi\Sigma$ and $\pi\Lambda$)

$$\psi_{K^{-}p}(r) \to \frac{1}{2iqr} \left[e^{iqr} - \tilde{s}_{K^{-}p}^{-1} e^{-iqr} \right]$$

$$\tilde{s}_{K^{-}p} = 2 \left(s_0^{-1} + s_1^{-1} \right)^{-1}, \quad s_I = e^{2i\delta_I}$$



- $\bar{K}N$ - $\pi\Sigma$ - $\pi\Lambda$ coupled channel potential
- Full outgoing boundary condition

$$\psi \to \frac{1}{2iqr} [e^{iqr} - \mathcal{S}^{\dagger}_{K^{-}pK^{-}p} e^{-iqr}] e_{K^{-}p}$$

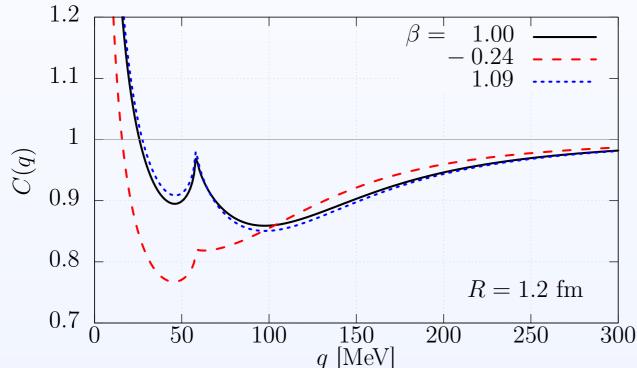
$$-\sqrt{\frac{\mu_{K^{-}p}q}{\mu_{\bar{K}^{0}n}q_{\bar{K}^{0}n}}} \mathcal{S}^{\dagger}_{K^{-}p\bar{K}^{0}n} e^{-iq_{\bar{K}^{0}n}r} e_{\bar{K}^{0}n}$$

Interaction dependence

- Interaction dependence of $\bar{K}N$ correlation
 - $I = 0 \ \bar{K}N$ interaction <== strongly constrained by the SIDDHARTA constraint

M. Bazzi, et al., NPA 881 (2012)

- $I=1~\bar{K}N$ interaction is not well known ==> vary $V^{I=1}_{\bar{K}N-\bar{K}N} \to \beta V^{I=1}_{\bar{K}N-\bar{K}N}$
- SIDDHARTA constraint on $a_0^{K^-p}$ ==> Varied region of β as $-0.24 < \beta < 1.09$



β	$a_0^{K^-p}$ [fm]	$a_0^{\bar{K}N,I=1}$ [fm]
-0.24	0.75- <i>i</i> 0.69	-0.07- <i>i</i> 0.13
1.00	0.65- <i>i</i> 0.91	0.61- $i0.78$
1.09	0.65-i0.96	0.64 -i0.95
$\left(a_0 \equiv -\mathcal{F}(E = E_{\rm th})\right)$		

- For $\beta = -0.24$,
 - Remarkable suppression around $\bar{K}^0 n$ threshold ($q \simeq 58 \text{ MeV}$)
 - Moderate cusp structure

 $I = 1 \ \bar{K}N$ interaction can be determined with the detailed analysis!

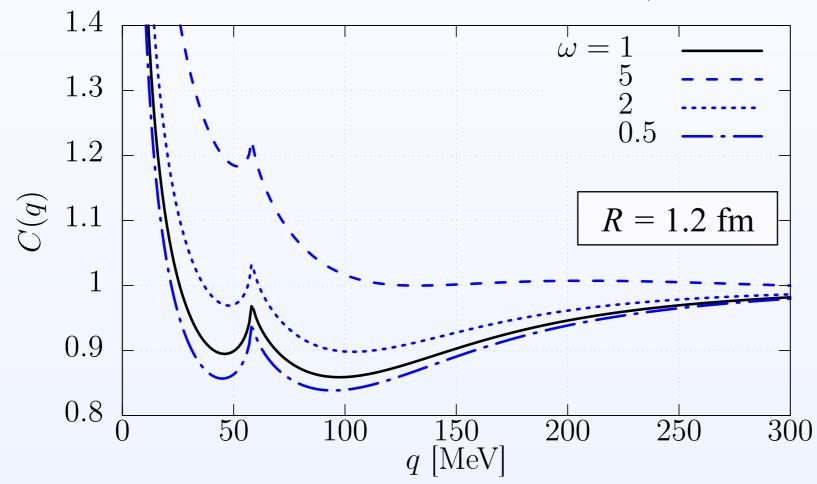
Source dependence

• Channel weight dependence of K^-p correlation

$$C_{K^{-}p}(\mathbf{q}) = \int d^3\mathbf{r} \ S(\mathbf{r}) \left[|\varphi^{C,\text{full}}(\mathbf{q},\mathbf{r})|^2 - |j_0^C(qr)|^2 + |\psi_{K^{-}p}^{C,(-)}(q,r)|^2 \right] + \sum_j \omega_j d^3\mathbf{r} \ S(\mathbf{r}) |\psi_j^{C,(-)}(q,r)|^2 \right]$$

• Vary the source weight of the $\pi\Sigma$ channel:

(* $\pi\Lambda$ source contribution is negligible)



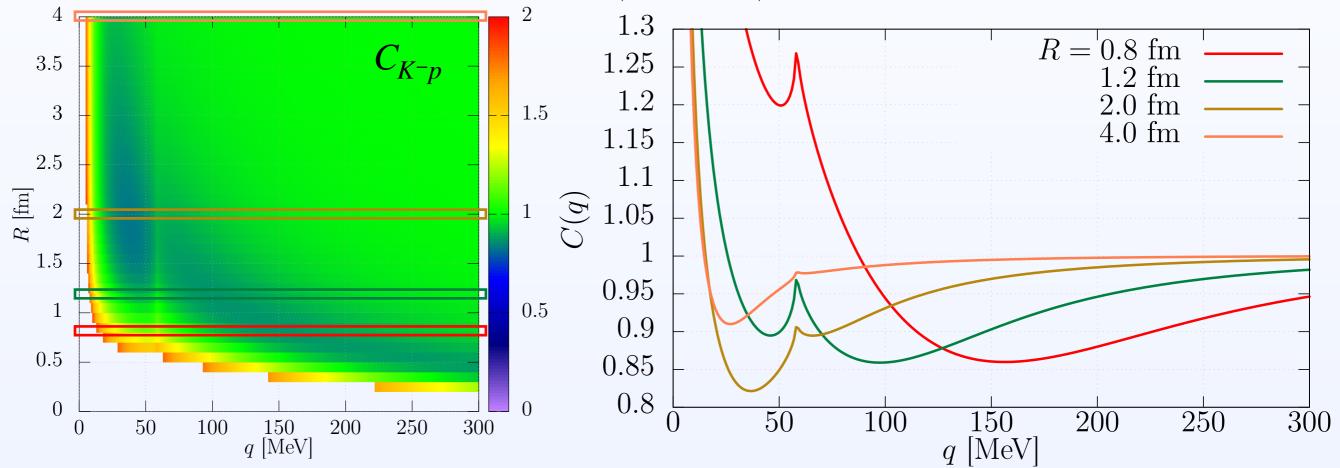
• Increase $\omega_{\pi\Sigma} = >$ • weaken dip at $q \sim 40 \text{ MeV}$

Source dependence

• Source size dependence of K^-p correlation

$$C_{K-p}(\mathbf{q}) = \int d^3\mathbf{r} \, S(\mathbf{r}) \Big[|\varphi^{C,\text{full}}(\mathbf{q},\mathbf{r})|^2 - |j_0^C(qr)|^2 + |\psi_{K-p}^{C,(-)}(q,r)|^2 \Big] + \sum_j \omega_j \int d^3\mathbf{r} \, S(\mathbf{r}) |\psi_j^{C,(-)}(q,r)|^2 \Big]$$

 $S(r) \propto \exp\left(-r^2/4R^2\right)$

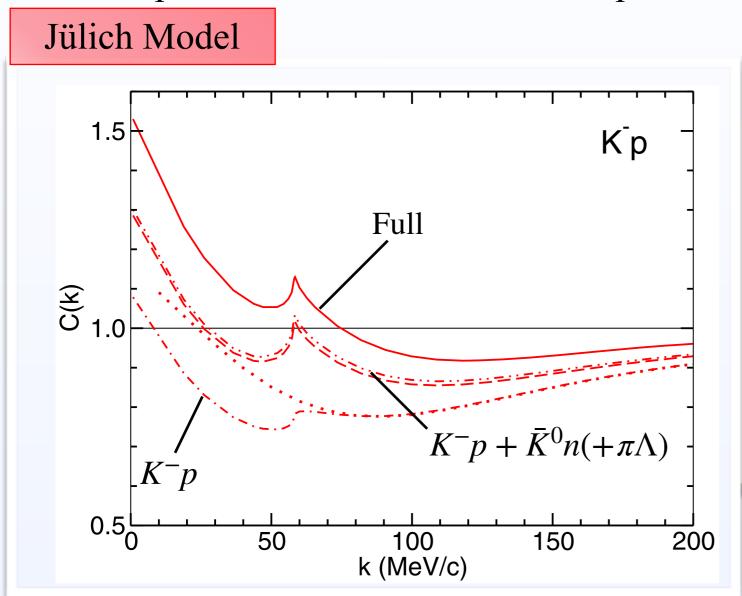


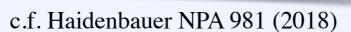
- Strong dependence around $R \sim 1.0$ fm <== Sensitive region: $|R/a_0| \lesssim 1$.
- Larger system: cusp effect is moderate

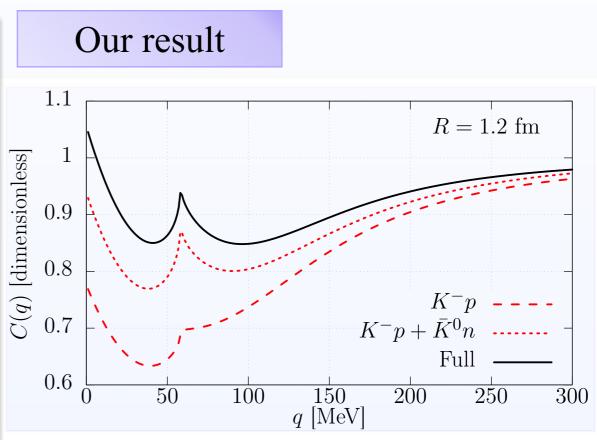
Measurement of the K^-p in other size systems are important!

Comparison with Jülich model

Comparison with Jülich model: coupled-channel effect





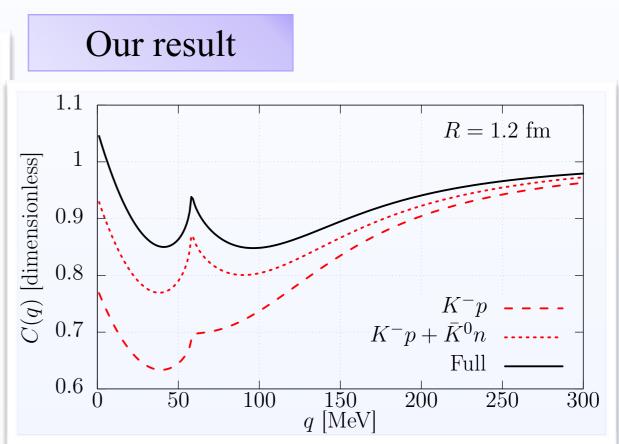


(2) Comparison with Jülich model

Comparison with Jülich model: refitted model

Jülich Model





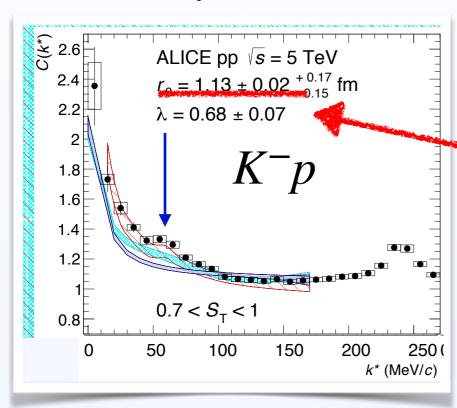
c.f. Haidenbauer NPA 981 (2018)

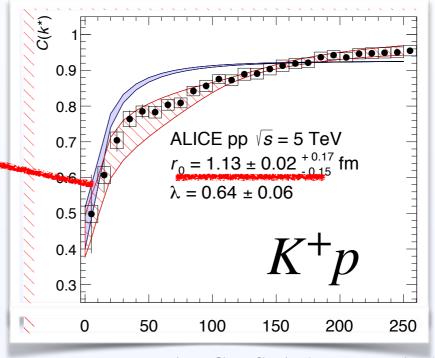
• Refitted Jülich model: constructed to reproduce $a_{K^-p}^{\text{SIDDHARTA}}$

^{*}A. Cieplý, et.al, NPA881(2012)

About the source size

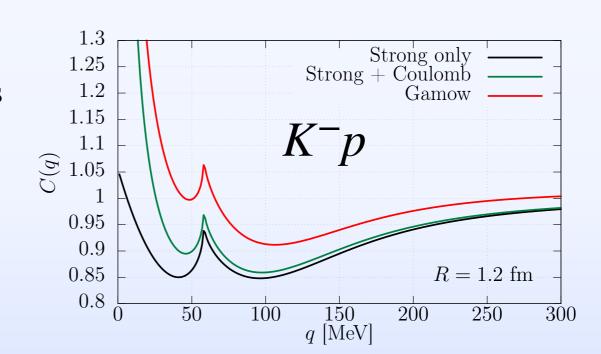
In ALICE analysis, the source size is determined from the K^+p correlation.





ALICE, S. Acharya et al., (2019), 1905.13470.

- But... Coulomb effect for K^+p correlation is
 - Relative source size is channel dependent: In general, $R_{\bar{K}N} \neq R_{KN}$
 - Gamow collection may over estimate the Coulomb int.



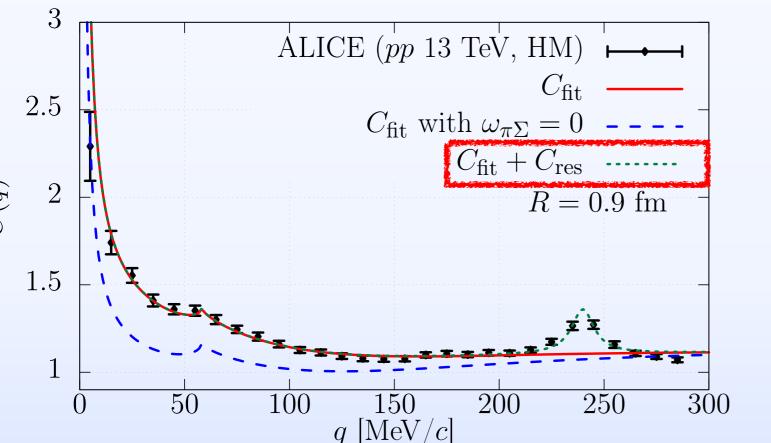
- $\Lambda(1520)$ contribution
 - Fit the remnant part of data $(C_{\rm data} C_{\rm fit})$ by Breit-Wigner function

$$C_{\text{res}}(q) = \frac{b\Gamma^2}{(q^2/2\mu_{K^-p} + m_p + m_{K^-} - E_R)^2 + \Gamma^2/4}$$

• Result

$$E_R = 1520.9 \text{ MeV}$$

$$\Gamma = 9.7 \text{ MeV}$$



• PDG pole position

