

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Theory View on Hyperon-Hyperon Interactions from Correlations

Kenji Morita

National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Fusion Institute, Japan RIKEN Nishina Center

Contents

- 1. Introduction
- 2. What we've done and learned
- 3. What we should do next

3 Dec. 2019

2

Hadron-Hadron Interaction QCD at Low Energy **Chiral Symmetry Breaking** Confinement 1000 Rich for NN system Limited for strangeness Theory: Lattice QCD Spectroscopy Scattering ChEFT Experiments Various Models Inputs to Many-body hadronic systems

Dibaryons: Simplest BB systems

Deutron (Urey et al., 1931)

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Lattice QCD Studies by HAL QCD Coll.

Show strong attraction at almost physical quark masses <u>Experimental Confirmation – Pair Correlation in pp,pA and AA</u> 3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

High Energy Nuclear Collisions as Hadron Factory

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Two-Particle Correlation

pair rest frame

Measuring Pair Correlation →Constrain Pairwise Interaction

$$C_{AB}(q) = \frac{N_{AB}^{\text{pair}}(q)}{N_A N_B(q)} = \begin{cases} 1 & \text{No Correlation} \\ \text{Others} & \text{Interaction} \\ \text{Interference} \\ \text{etc} & \text{etc} \end{cases}$$

$$S_{A}(x_{1}, k_{1}) \qquad p_{1} \qquad P = p_{1} + p_{2}$$

$$q = \sqrt{-\left(\frac{p_{1} - p_{2}}{2} - \frac{(p_{1} - p_{2}) \cdot P}{P^{2}}P\right)^{2}} = |q^{*}|$$

$$S_{B}(x_{2}, k_{2}) \qquad p_{2}$$

$$C_{AB}(q) \simeq \int d^{3}r^{*} S_{P}^{\text{rel}}(r^{*}) |\psi_{AB}^{(-)}(r^{*}, q^{*})|^{2}$$
(# of pair)

(# of pair) = (integration over relative distribution x weight factor)

Random emission from the
"Smooth" SourceNon-relativistic scattering wave function
FSI and (a)symmetrization (for identical
pairs)

More rigorous formula found in Anchishkin, Heinz, Renk, PRC57 ('98)

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

What we learned:

How to distinguish the nature of the interaction and existence of the bound state

Correlation from FSI

Static/Spherical Source

 $C_{AB}(q) = 1 + \int dr \tilde{S}^{\text{rel}}(r) (|\chi_q(r)|^2 - |j_0(qr)|^2)$

- Assumptions
 - Gaussian Source
 - Asymptotic w.f.
 - Effective range formula

Results

- $C(q) = C(qR, R/a_0)$ for $r_{eff}=0$
- System size dependence Characterized by the scattering length a₀

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

9

Lednicky+ '82

Recipe for Identifying Nature of Interaction

KM+ '19 (PRC in press)

What we learned:

Other sources of the correlation HBT / Resonance / Coulomb

Coulomb Interaction

Long-range attraction or repulsion

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Example : $p\Omega$ Correlation

Theory : HAL QCD potential + Expanding Source model

 $N\Omega$ potential

Example: $p\Omega$ Correlation

KM+ '19 (PRC in press)

$\Omega\Omega$ (S=-6) : Coulomb+HBT+Unitary

Gongyo+, (HAL QCD), PRL'18

 m_{π} =146MeV, m_{Ω} =1713MeV

3 Dec. 2019

+Coulomb repulsion

t/a	a ₀ [fm]	r _{eff} [fm]	E _B [MeV]		
16	65.3	1.29	0.1		
17	17.6	1.23	0.5		
18	11.7	1.21	1.0		
\mathbf{V}					
Unita	ry regin	me in ty	pical		
source size for HIC					

$\Omega\Omega$ Correlation: Coulomb+HBT+Unitary

HBT gives suppression of C(q) for larger system Small spin-0 contribution : unseen in C(q) despite large a_0

Highly challenging: statistics of di-Omega events Too large system required for bound regime

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

ΛΛ Correlation (HBT+resonance)

Constraint from the STAR measurement

Fix λ from $\Sigma^{0} \rightarrow \Lambda \gamma$ contribution Dilution of C(q) (reduction of C(0))

Free(fitting parameter) λ can lead to a global but physically false minimum

Favor weakly attracting $\Lambda\Lambda$ pair

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

KM+ '15

ΛΛ Correlation @LHC ■ ALICE pp (7 and 13TeV) and p+Pb (5TeV)

Version 2019 (Fabbietti, QM2019)

Allow H-dibaryon as $\Lambda\Lambda$ bound state

 Probably we're here.
 Larger system (HI) can kill (or confirm) the bound regime (Statistics at q < 50MeV crucial)

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

What should we do next?

Trivial things : statistics

improving experimental technique

Things to Check : Source function in HIC Recollection: the HBT puzzle in $\pi\pi$ π freeze-out: 100 25 Positive x-t correlation x_{side} (fm) 0 Ko+ '02, Pratt '09 -50-25 0 25 50 x_{out} (fm) **Crossover Boundary** Ω, Ξ Freeze-out What about p, Λ , K etc...? Different size comparison (e.g., S-L ratio) may be free from the realistic source problem, but better to know X

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Constraint on p Source Function

$$\frac{dN}{dy \rho_T dp_T 2\pi} = \frac{d}{(2\pi)^3} 2m_T V \int_0^\infty d\rho \rho e^{-\rho^2/2} I_0 \left(\frac{p_T}{T} \sinh y_T\right) \mathcal{K}_1 \left(\frac{m_T}{T} \cosh y_T\right)$$

$$\frac{V}{V} = 2\tau_0 \pi R^2, \quad y_T = \alpha \rho^\beta, \ \rho = \frac{r}{R}$$
+2-body decay from m_{res} <2GeV

relative distance distribution

Reasonable size at T=155MeV HBT radii (~4fm)

Momentum dependence

Well reproduce pt-spectrum

Is this Gaussian model sufficient?

Maybe not, when one wants to have relative source function with different particle species.

Coupled Channel Most of YN, YY systems are C.C. systems!

Additional contribution (weight ω_j) and modification of Ψ though Schrödinger Equation \rightarrow Y. Kamiya (K⁻p correlation / Thursday)

Caveat – Small $V_{off-diagonal}$ does <u>not</u> mean small influence on C(q), if close to unitary regime (Sekihara+ '18)

Concluding Remarks

Single-channel analysis is established

- Correlation : complementary, sometimes unique approach to get insights into BB interaction.
- C(q) in small systems is more sensitive to FSI.
- System size scan to confirm bound state.
- Toward precision era consider baryon source functions in HIC and coupled channel analyses.

Comment on each channels

- ΩΩ most likely unitary regime even in HIC. Enhancement over Coulomb+HBT. Waiting for J=1,2,3 on the lattice.
- pΩ from unitary (pp,pA,peripheral) to bound regime (AA). Coupled channel analysis necessary for quantitative determination.
- $\Lambda\Lambda$ Full coupled channel and system size scan for further constraint.
- K-p Testing ground of the full coupled channel framework.

Backup

Spectra@7=155MeV

Direct only $V = 103 - 4160 \text{ fm}^3$ (60-80%) (0-10%) Include $\Xi(1530)$ decay $V = 171 - 4100 \text{ fm}^3$ (60-80%) (0-10%) Include m* < 2GeV V = 110 - 3500 fm³ (60-80%) (0-10%)

Fix $\tau_0 = 10$ fm for 0-10% and use $\tau_0 \sim (dN/dy)^{1/3} \rightarrow Fix R$ $\implies R = 2 - 8$ fm, $R_{\text{proton-HBT}} \sim 4$ fm (Consistent w/ ALICE)

System is too large Coulomb+HBT dominate

Further suppressed by the spin degeneracy factor 1/16

27

28

29

$\Omega\Omega$ Correlation

Wave function

$$|\varphi_{\Omega\Omega}^{\text{spin-averaged}}(\boldsymbol{q^*}, \boldsymbol{r^*})|^2 = \frac{1}{16}|\varphi(\boldsymbol{J}=\boldsymbol{0})|^2 + \sum_{I=1}^3 \frac{2J+1}{16}|\varphi(J)|^2$$

FSI+Coulomb+symmetrization

Coulomb+(a)symmetrization

Correlation function

Strong FSI effect for small systems

Further suppressed by the spin degeneracy factor 1/16

 $p\Omega$ @almost phys.point 3000 $\Sigma^{+\star}\Xi^{-\star}$ 2900 $\Sigma^{0*}\Xi^{0*}$ 2800 Mass [MeV] ∑⁰Ξ⁰*~∑⁺Ξ⁻* 2700 $\Sigma^{-*}\Xi^+$ <u>Σ0×Ξ</u>0 ΛΞ⁰* Spin-2 : D-wave only – suppressed \rightarrow Quasi-stable Dibaryon state? 2600 NΩ ΣΞ 2500 Spin-1: Strongly Coupled ΛΞ 2400 $8_{\rm f}$ -10_f, 10_f-10_f $8_{f} - 8_{f}$

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

31

Comparison to Old Potentials

pΩ Interaction (⁵S₂)

 $N\Omega$ potential (fitted to Lattice data) : bound state exists

+Coulomb attraction

t/a	a ₀ [fm]	r _{eff} [fm]	E _B [MeV]
11	3.45	1.33	2.15
12	3.38	1.31	2.27
13	3.49	1.31	2.08
14	3.30	1.33	2.24

Bound state regime for Heavy Ion Collisions Close to unitary for smaller system

Long-range part is assumed to be 2π exchange

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Bound state regime: Suppression of $C_{SL}(Q)$ Below unity at low Q

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Small systems in Unitary regime

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

Small systems in Unitary regime

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

3rd EMMI Workshop on anti-matter, hyper-matter and exotica production at the LHC

39