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Bound states in a hot environment 



Outline 

1.  Correlations in nuclear systems 
2.  Freeze-out approximation 
3.  Thermodynamic equilibrium: the spectral function 
4.  Beth-Uhlenbeck equation (S-matrix approach) 
5.  Application to HIC 
6.  Weakly bound nuclei and astrophysics 



1. Correlations and bound states 
•  Nuclear systems (nuclei, nuclear matter, neutron stars, HIC,…): dense, 

strongly interacting many-particle systems (also: dense plasmas, warm 
dense matter, QGP, etc.) 

•  Ideal quantum gases? Correlations, formation of bound states. Quantum 
condensates, correlations in the continuum.                                
Quantum statistical approach is needed. 

•  Single-particle approximation: Quasiparticles, mean-field approximation, 
effective mass, shell-model, transport codes 

•  How to include correlations, in particular bound states? 
         Talk of Elena Bratkovskaya: PHQMD: ‘price to pay for profit’ 
•  In nuclei: Hoyle state, molecule-like states (9Be,…). Pairing,… 
•  In nuclear matter (astrophysics): Saha equation, nuclear statistical 

equilibrium, … pasta phases, Beth-Uhlenbeck equation 
•  In HIC: cluster formation, freeze-out – coalescence? Transport codes 
          N-body correlations are important for cluster formation! 



Nuclear matter phase diagram 
Core collapse supernovae 

T. Fischer, GSI Darmstadt 
U Wroclaw 



Freeze-out in the phase diagram 
Talk given by Manuel Lorenz Jørgen Randrup, Jean Cleymans:  

Freezeout density (2016) 

Nonequilibrium evolution of the fireball. 
Where the clusters are formed? Very early? Late? 



2. How to form clusters? 

Nuclear reactions, nonequilibrium process 

Talk given by Stanisław Mrówczyński  

resonances, 4Li ? 



Decay modes of nuclei 

 α decay of heavy nuclei 



Preformation: α decay of 212Po 

d: 208Pb 

m: 212Po 



212Po: α on top of 208Pb 

Cluster: center of mass motion as collective degree of freedom, 
Separation of the c.o.m. motion from the internal motion. Exact wave equations? 
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with respect to the 208Pb core. 
 
Woods-Saxon potential  
of 2 neutrons and 2 protons 
including Coulomb repulsion. 
 
Density in Thomas-Fermi  
approximation  
with chemical potential fixed  
by the total nucleon number 
 
Pauli-blocking of the α particle 

G. R. et al., PRC 90, 034304 (2014),  
C. Xu et al., PRC 93, 011306(R) (2016) 

Where the α is formed? Preformation factor? 
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Alpha Decay to Doubly Magic Core in 
Quartetting Wave Function Approach 
arXiv1912.01151: 104Te  

Bound state (quartet) in a dense environment 



selection of the set of relevant observables 

extended von Neumann equation 

principle of weakening of initial correlations (Bogoliubov, Zubarev) 

time evolution operator 

relevant statistical operator 

self-consistency relations 

after thermodynamic limit 

maximum of information entropy 

Nonequilibrium statistical operator (NSO) 
Nonequilibrium – (local) thermodynamic equilibrium: freeze-out concept 



Relevant statistical operator 

State of the system in the past 

Construction of the relevant statistical operator at time t 

Generalized Gibbs distribution 

But: von Neumann equation? 
Entropy? 

-> maximum 



3. Many-particle theory, spectral function 

Spectral function 

Equation of state 

Expansion for small damping (Im Σ) 

Quasiparticle energy 

Correlations (bound states) in Im Σ 
Cluster decomposition, Bethe-Salpeter equation 

Green function G, 
Self-energy Σ 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

medium effects 



Quasiparticle picture: RMF and DBHF 

C. Fuchs et al.; 
J.Margueron et al., Phys.Rev.C 76,034309 (2007) 

But: cluster formation 
Incorrect low-density limit 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

medium effects 

bound state formation 

Inclusion of the light clusters (d,t,3He,4He) 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 



Ideal mixture of reacting nuclides 

mass number A, 
charge ZA, 
energy EA,ν,K, 
ν internal quantum number, 
~K center of mass momentum 

Chemical equilibrium, mass action law, 
Nuclear Statistical Equilibrium (NSE) 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

medium effects 

bound state formation 

low density limit saturation density 



Nuclear statistical equilibrium 
(NSE) 

Chemical picture: 
Ideal mixture of reacting components 
Mass action law 

Physical picture: 
"elementary" constituents 
and their interaction 

Interaction between the components 
internal structure: Pauli principle Quantum statistical (QS) approach, 

quasiparticle concept, virial expansion 
“excluded volume” 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
with quasiparticle clusters: 
self-energy and Pauli blocking 

medium effects 

bound state formation 



Effective wave equation  
for the deuteron in matter 
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BEC-BCS crossover: 
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Add self-energy 

Thouless criterion 
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Ed (T,µ) = 2µ

In-medium two-particle wave equation in mean-field approximation 



Pauli blocking – phase space occupation 

momentum space 

Fermi sphere 
px 

py 

pz cluster wave function (deuteron, alpha,…)  
in momentum space 

P P - center of mass momentum 

The Fermi sphere is forbidden, 
deformation of the cluster wave function 
in dependence on the c.o.m. momentum P 

The deformation is maximal at P = 0. 
It leads to the weakening of the interaction 
(disintegration of the bound state). 



Shift of the deuteron bound state energy 

G.R., Nucl. Phys. A 867, 66 (2011)  

Dependence on nucleon density, various temperatures, 
zero center of mass momentum  

thin lines: 

fit formula  



Scattering phase shifts in matter 



Composition of dense nuclear matter 

mass number A 
charge ZA 
energy EA,ν,K 
ν: internal quantum number  
excited states, continuum correlations 

•  Medium effects: correct behavior near saturation 
  self-energy and Pauli blocking shifts of binding energies, 
  Coulomb corrections due to screening (Wigner-Seitz, Debye) 



Shift of Binding Energies of Light Clusters 

G.R., PRC 79, 014002 (2009) 
S. Typel et al.,  
PRC 81, 015803 (2010) 

Symmetric matter 



Light Cluster Abundances 

Composition of symmetric matter in dependence on the baryon density nB, T = 5 MeV.  
Quantum statistical calculation (full) compared with NSE (dotted).  

G. R., PRC 92, 054001 (2015) 



Different approximations 

Ideal Fermi gas: 
protons, neutrons,  
(electrons, neutrinos,…) 

Quasiparticle quantum liquid: 
mean-field approximation 
BHF, Skyrme, Gogny, RMF 

Nuclear statistical equilibrium: 
ideal mixture of all bound states  
(clusters:) chemical equilibrium 

Chemical equilibrium  
of quasiparticle clusters: 
self-energy and Pauli blocking 

Second virial coefficient: 
account of continuum contribution, 
scattering phase shifts, Beth-Uhl.Eq. 

Generalized Beth-Uhlenbeck formula: 
medium modified binding energies, 
medium modified scattering phase shifts 

Cluster virial approach: 
all bound states (clusters) 
scattering phase shifts of all pairs  

medium effects 

bound state formation 

continuum contribution 

chemical & physical picture 
Correlated medium: 
phase space occupation by all bound states 
in-medium correlations, quantum condensates 



4. Beth-Uhlenbeck formula 



Deuteron-like scattering phase shifts 
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Virial coeff. ∝  

10

A. Two-nucleon contribution

The virial expansion of the EOS (4) reads [23, 35, 36, 38, 39]

ntot
n (T, µn, µp) =

2
⇤3

h

bn(T )eµn/T + 2bnn(T )e2µn/T + 2bnp(T )e(µn+µp)/T + . . .
i

,

ntot
p (T, µn, µp) =

2
⇤3

h

bp(T )eµp/T + 2bpp(T )e2µp/T + 2bpn(T )e(µn+µp)/T + . . .
i

, (31)

Already the noninteracting, i.e. ideal Fermi gas of nucleons contains two e↵ects in contrast to the standard low-
density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0

TI=1(T ) from the neutron matter case as

ntot
B,neutron m.(T, µn, µp) = nqu

n (T, µn, µp) +
25/2

⇤3
e2µn/T v0

TI=1(T ) + . . . , (32)

and the residual isospin-singlet contribution v0
TI=0(T ) from the symmetric matter case (µp = µn) according to

ntot
B,symmetr.m.(T, µn, µp) = nqu

n (T, µn, µp) + nqu
p (T, µn, µp)

+
25/23
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e(µn+µp)/T
h

e�E0
d/T � 1 + v0

TI=0(T ) + v0
TI=1(T )

i

+ . . . , (33)

dots indicate higher orders in densities. The residual second virial coe�cients v0
c (T ) are given by [36]

v0
c (T ) =

1
⇡T

Z 1

0

dE e�E/T

⇢

�c(E)� 1
2

sin[2�c(E)]
�

. (34)

Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
to the Levinson theorem for each bound state the contribution �1 appears.
ii) The contribution � 1

2 sin[2�c(E)] appears to avoid double counting [32, 36] when introducing the quasiparticle
picture. E denotes the relative energy in the c.o.m. system.

The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0

c (T ) if the quasiparticle picture is introduced. The remaining contribution to the second virial coe�cient b⌧,⌧ 0(T ) is
absorbed in the quasiparticle shift. This has been discussed in detail in [32, 36, 39].

To give an approximation for v0
c (T ), we performed calculations within the generalized Beth-Uhlenbeck approach

[36] for a simple separable potential,

Vc(12, 1020) = ��ce
� (p1�p2)2

4�2 e
� (p01�p02)2

4�2 ��,�0�⌧,⌧ 0 (35)

with �d = 1287.37 MeV for the deuteron (isospin 0) channel, � = 1.474 fm�1, see [34], adapted to binding energy and
point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0

d(T )
has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)



Deuteron-like scattering phase shifts 

G. Roepke, J. Phys.: Conf. Series 569, 012031 (2014) 
Phys. Part. Nucl. 46, 772 (2015) [arXiv:1408.2654] 

deuteron bound state -2.2 MeV 
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density, classical limit:
i) The relativistic dispersion relation E⌧ (p) = c

p

(m⌧ c)2 + (~p)2 � m⌧ c2 results in a first virial coe�cient b⌧ 6= 1.
The value b⌧ = 1 follows from the dispersion relation E⌧ (p) = ~2p2/2m⌧ . For a more detailed investigation see [39].
ii) The degeneration of the fermionic nucleon gas leads to the contribution �2�5/2 to b⌧⌧ [35].

The remaining part of the second virial coe�cient is determined by the two-nucleon interaction. We can introduce
di↵erent channels, in particular the isospin triplet (TI = 1, neutron matter) and isospin singlet (TI = 0, deuteron)
channels which are connected with the spin singlet and spin triplet state, respectively, if even angular momentum is
considered, for instance S-wave scattering. The second virial coe�cient in both channels can be derived from bnn and
bnp. Empirical values are given as function of T in Ref. [38] (isospin symmetry is assumed).

B. Generalized Beth-Uhlenbeck formula

The second virial coe�cients bnn and bnp cannot directly used within a quasiparticle approach. Because part of
the interaction is already taken into account when introducing the quasi-particle energy, we have to subtract this
contribution from the second virial coe�cient to avoid double counting, see [32, 36, 39]. We expand the density
with respect to the fugacities within the quasiparticle approximation picture (23), (24). We identify the residual
isospin-triplet contribution v0
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Comparing (33) with the ordinary Beth-Uhlenbeck formula (8) there are two di↵erences:
i) After integration by parts, the derivative of the scattering phase shift is replaced by the phase shift, and according
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The EOS (4) is not free of ambiguities with respect to the subdivision into bound state contributions and continuum
contributions, compare (33), (34) with (7), (8). The continuum correlations in b⌧,⌧ 0(T ) are reduced to the residual part
v0
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point rms radius of the deuteron. After evaluating the T-matrix, the scattering phase shifts are obtained, and v0
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has been evaluated. For details see [36]. The result is approximated by

v0
d(T ) = v0

TI=0(T ) ⇡ 0.30857 + 0.65327 e�0.102424 T/MeV . (36)

Tamm-Dancoff 



EOS: continuum contributions 
Partial density of channel A,c at P (for instance, 3S1= d): 

separation: bound state part – continuum part ? 

parametrization (d – like): 

G. Roepke, PRC 92,054001 (2015) 

Cluster virial expansion 
G.R., N. Bastian, D. Blaschke, T. Klaehn, S. Typel, H. Wolter, NPA 897, 70 (2013) 



Density effects? 

the proton anomaly and the Dashen, Ma, Bernstein S-matrix approach 

Talk given by Peter Braun-Munzinger: 

The Beth-Uhlenbeck equation is identical  

with the Dashen, Ma, Bernstein approach.   



5. Heavy ion collisions 



EoS at low densities from HIC 

chemical constants 
Yields of clusters from HIC: p, n, d, t, h, α  

inhomogeneous, 
non-equilibrium 

M. Hempel, K. Hagel, J. Natowitz, G. Ropke, S. Typel, Phys. Rec. C 91, 045805 (2015) 
QS, excluded volume 



Symmetry Energy 

Scaled internal symmetry energy as a function of the scaled total density. 
MDI: Chen et al., QS: quantum statistical, Exp: experiment at TAMU   

J.Natowitz et al. PRL, May 2010 



Symmetry energy: low density limit 
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correlations (bound states)   larger values for the symmetry energy 



Formation of light clusters in heavy 
ion reactions, transport codes 

Wigner distribution 

cluster mean-field potential 

loss rate 

in-medium  
breakup transition operator 

breakup cross section 

C. Kuhrts, M. Beyer, P. Danielewicz, and G. Ropke, Phys. Rev. C 63, 034605 (2001) 
P. Danielewicz and Q. Pan, Phys. Rev. C 46, 2002 (1992) 



AMD (Akira Ono) 



A cluster in medium & Clusterized 
nuclear matter 

 

from A. Ono 





6. Weakly bound nuclei, astrophysics 



Core-collapse supernovae 

Density.  
 
electron fraction, and 
 
temperature profile 
 
of a 15 solar mass supernova 
at 150 ms after core bounce 
as function of the radius. 
 
Influence of cluster formation  
on neutrino emission  
in the cooling region and 
on neutrino absorption 
in the heating region ? 
K.Sumiyoshi et al., 
Astrophys.J. 629, 922 (2005) 



Composition of supernova core 

K.Sumiyoshi, 
G. R., 
PRC 77, 
055804 (2008) 

Mass fraction X  
of light clusters  
for a post-bounce  
supernova core 



Asymmetric nuclear light clusters in 
supernova matter  

A. V. Yudin, M. Hempel, S. I. Blinnikov, D. K. Nadyozhin, I. V. Panov, 
Monthly Notices of the Royal Astronomical Society 483, 5426 (2019) 



Example: 5He 
Partial density 

virial coefficient nuclear stat. equ. 

generalized Beth-Uhlenbeck 
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C.J.Horowitz, A.Schwenk, Nucl. Phys. A 776, 55 (2006) ratio generalized Beth-Uhlenbeck/NSE 



Conclusions 

•  Nuclear systems: strongly interacting, quantum 
 
•  Correlations (bound states) are of relevance 

•  Continuum correlations, resonances 

•  In-medium corrections, Beth-Uhlenbeck equation 

•  Inhomogeneous, nonequilibrium systems 

•  Cluster (pre)formation, early “initial” correlations  

•  Of interest also for the quark substructure 
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Z. Ren, A. Sedrakian, P. Schuck, S. Shlomo,         
A. Tohsaki, S. Typel, H. Wolter, C. Xu, T. Yamada, B. Zhou 

for collaboration 
 

      to you 
for attention          

                                                                              D.G. 



7. Neutron stars 
Inner crust: pasta structures 



Density of neutron star crust 



Equation of state: chemical potential  

Chemical potential for symmetric matter. T=1, 5, 10, 15, 20 MeV. 
QS calculation compared with RMF (thin) and NSE (dashed).  
Insert: QS calculation without continuum correlations (thin lines).  
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Symmetric matter: free energy per nucleon 

Dashed lines: no continuum correlations 



Supernova explosion 

T.Janka 



Formation of light clusters in heavy 
ion reactions, transport codes 

Wigner distribution 

cluster mean-field potential 

loss rate 

in-medium  
breakup transition operator 

breakup cross section 

C. Kuhrts, M. Beyer, P. Danielewicz, and G. Ropke, Phys. Rev. C 63, 034605 (2001) 
P. Danielewicz and Q. Pan, Phys. Rev. C 46, 2002 (1992) 



Mott effect, in-medium cross section  

C. Kuhrts, PRC 63,034605 (2001) 



Cluster virial expansion for nuclear matter 
within a quasiparticle statistical approach 

G.R., N. Bastian, D. Blaschke, T. Klaehn, S. Typel, H. Wolter, NPA 897, 70 (2013) 

Generating functional 

Avoid double counting 

Generalized Beth-Uhlenbeck approach 



Excited light nuclei 

decreasing 
density 

systematics in  
weakly bound  
light elements 

Yoshiko Kanada-En'yo  
Cluster2012,Debrecen  

clustering at 
low densities 

clusters disappear  
at increasing density: 
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Few-particle Schrödinger equation 
in a dense medium 

4-particle Schrödinger equation with medium effects 
(self-energy shifts and Pauli blocking) 
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E HF (p1) + E HF (p2) + E HF (p3) + E HF (p4 )[ ]( )Ψn,P (p1, p2, p3, p4 )

+ (1− f p1 − f p2 )V
p1$ ,p2$

∑ (p1, p2;p1$, p2$)Ψn,P (p1$, p2$, p3, p4 )

+ permutations{ }
= En,PΨn,P (p1, p2, p3, p4 )
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