# Correlations, pre-clusters and light nuclei close to the hypothetical QCD critical point



Juan M. Torres-Rincon (Goethe University Frankfurt)



PRC 100 (2019) no.2, 024903 and arXiv:1910.08119 with E. Shuryak (Stony Brook U.)





3rd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC Wrocław, December 2-6, 2019



#### Outline

- Motivation: QCD critical point
- Main idea: Critical mode and NN interaction
- Message: Strongly-correlated systems
- Results I: Nuclear correlations close to the critical region
- Results II: Pre-clusters and nuclear ratios
- Some comments: Quantum effects at finite *T* in <sup>4</sup>He
- Summary



# QCD phase diagram and critical point

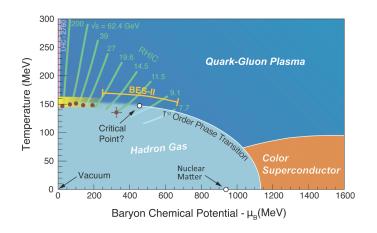
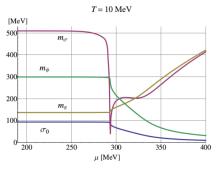


Image: S. Mukherjee (Brookhaven National Lab.)

#### QCD critical mode

 $\sigma$  mass decreases close to the phase transition/critical point (correlation length  $\xi$  increases)



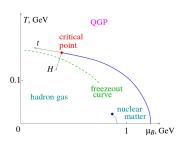
R.-A. Tripolt, Ph.D. Thesis, 2015 (quark-meson model with FRG approach)

$$m_\sigma \sim rac{1}{\xi} \sim \left(rac{|T-T_c|}{T_c}
ight)^
u$$
 (with  $\xi$  limited by finite lifetime effects)

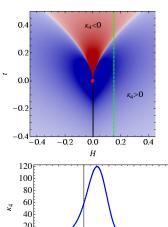


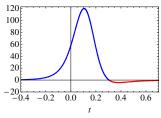
# Moments of the $\sigma$ probability distribution

#### M. Stephanov, 2008 and 2011



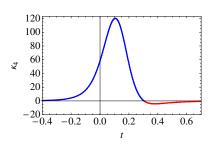
$$P[\sigma] \sim \exp\left(-\Omega/T
ight)$$
  $\Omega = \int d^3x \; rac{(
abla \sigma)^2}{2} + rac{m_\sigma^2}{2} \sigma^2 + rac{\lambda_3}{3} \sigma^3 + rac{\lambda_4}{4} \sigma^4$   $\kappa_2 = \langle \sigma_0^2 
angle$   $\kappa_4 = \langle \sigma_0^4 
angle - 3 \langle \sigma_0^2 
angle^2$   $ext{Kurtosis} = \kappa_4/\kappa_2^2$ 





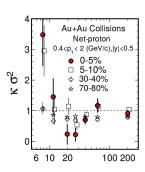
# Critical mode couples to baryons

#### M. Stephanov, 2011



$$egin{aligned} C_2 &= \langle \delta extstyle extstyle N_{
ho - ar{
ho}}^2 
angle \ C_4 &= \langle \delta extstyle extstyle extstyle N_{
ho - ar{
ho}}^2 
angle - 3 \langle \delta extstyle extstyle$$

# $\mathcal{L}_{\textit{eff}} = g \sigma p ar{p}$



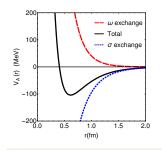
Colliding Energy  $\sqrt{s_{NN}}$  (GeV)

STAR Coll., 2015



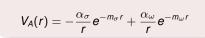
#### **NN** interaction

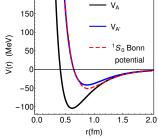
Simple-as-possible (but not simpler) model for *NN* interaction due to **Serot-Walecka (1984)** 



- Large cancellation between attraction and repulsion to produce bound nuclear matter
- A small imbalance would strongly modify the net potential!

200

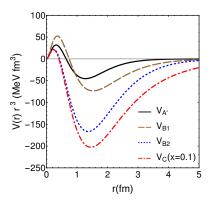




 $V_{A'}(r)$  allows for extra repulsion to match Bonn potential (Machleidt, 2000)

#### NN potential modifications

- Close to  $T_c$  a very light  $\sigma$  enhances the attraction
- NN potential should be affected by the presence of the QCD critical point!
- We consider more and more attractive potentials:



- V<sub>A</sub>: Serot-Walecka with MF parameters
- $V_{A'}$ : extra repulsion  $\alpha_{\omega} \rightarrow 1.4\alpha_{\omega}$
- $V_{B1}$ :  $V_{A'}$  with  $m_{\sigma}^2 \rightarrow m_{\sigma}^2/2$ ,  $\alpha_{\sigma} \rightarrow \alpha_{\sigma}/2$
- $V_{B2}$ :  $V_{A'}$  with  $m_{\sigma}^2 \to m_{\sigma}^2/2$
- $V_C$ : very light critical mode  $V_C(x) = (1-x)V_{B2} + xV_{A'}(m_\sigma^2 \to m_\sigma^2/6)$



# Numerical study: Molecular Dynamics + Langevin

NN potential in a classical nonrelativistic Molecular Dynamics scheme

$$\begin{cases} \frac{d\vec{x}_i}{dt} &= \frac{\vec{p}_i}{m_N} \\ \frac{d\vec{p}_i}{dt} &= -\sum_{j\neq i} \frac{\partial V(|\vec{x}_i - \vec{x}_j|)}{\partial \vec{x}_i} - \lambda \vec{p}_i + \vec{\xi}_i \end{cases}$$

with Langevin dynamics,

$$\begin{array}{rcl} \langle \vec{\xi_i}(t) \rangle & = & 0 \\ \langle \xi_i^a(t) \xi_j^b(t') \rangle & = & 2T \lambda m_N \delta^{ab} \delta_{ij} \delta(t-t') \end{array}$$

where a, b = 1, 2, 3 and

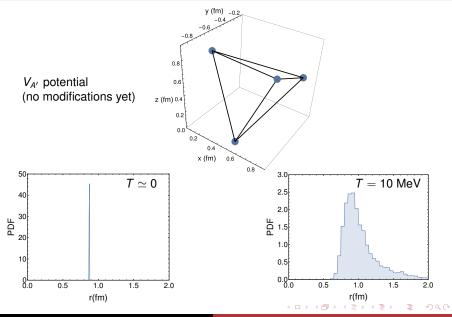
$$\lambda = T/(m_N D_B)$$

with  $D_B$  the baryon diffusion coefficient

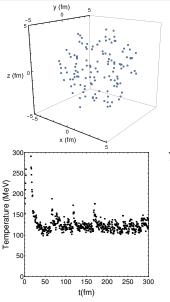
Quantum effects neglected at freeze-out temperatures (see later)

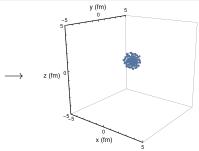


## Small clusters, N = 4



### Big clusters, N = 128





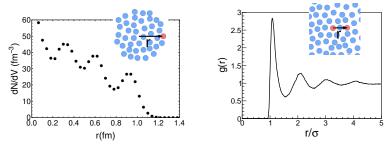
T = 120 MeV

At large *N* the potential energy always wins over entropy: **clustering effect**.

This is just an illustrative example: unreachable time scales for HICs!

# Message: Strongly-correlated systems

■ Strongly correlated system ( $P/K \simeq \mathcal{O}(N) > 1$ ): beyond mean field



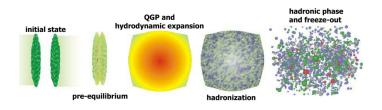
- Infinite systems: internal structure described by **pair correlation function** g(r) e.g. liquid Argon (N = 108) via Lennard-Jones potential
- Approaches based on Boltzmann assumptions would NOT capture the whole effect (similar idea in E. Bratkovskaya's talk)

## Approaching the physical case

#### Effects preventing clustering

- Expansion, radial collective flow
- Freeze-out temperatures T ~ 150 MeV
- Finite time effects (duration of hadronic phase)

We need to address these for RHIC collisions at the Beam Energy Scan

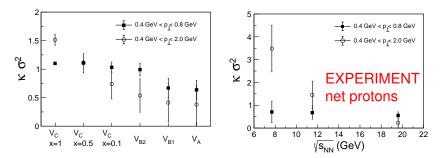


Focus on BES I at  $\sqrt{s_{\textit{NN}}} <$  19.6 GeV, as measured by STAR @ RHIC (STAR Collab. 2016 & 2017)

#### Higher-order moments

Few-body correlations should contribute to proton moments

Scaled kurtosis: 
$$\kappa \sigma^2 = C_4/C_2$$



Expected increase with enhanced attraction, esp. in the wider  $p_{\perp}$  window.

#### Pre-clusters to light nuclei: Triton-proton/deuteron ratio

$$\frac{N_t N_p}{N_d^2} = g \qquad (g = 0.29)$$

 We assume that the statistical (Boltzmann) weights give a good overall description (see P. Braun-Munzinger's talk)

$$N = \textit{Vol} \; rac{(2S+1)}{2\pi^2} \textit{m}^2 T \; \textit{K}_2(\textit{m}/\textit{T}) \exp\left(rac{\textit{B}\mu_\textit{B} + \textit{q}\mu_\textit{q}}{\textit{T}}
ight)$$

■ Ratio considered before by Sun, Chen, Ko, Xu (2017) with a similar motivation (critical point) but a different (?) perspective (coalescence) (see C.-M. Ko's talk)

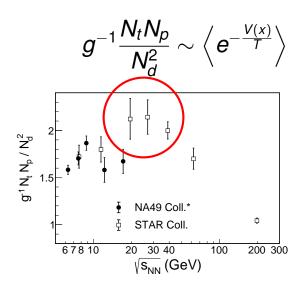
### Triton-proton/deuteron ratio

$$g^{-1} \frac{N_t N_p}{N_d^2} \sim \left\langle e^{-\frac{V(x)}{T}} \right\rangle \qquad (g = 0.29)$$

V(x) is the NN potential, non negligible close to  $T_c$ 

Important: For the measured multiplicities, feed-down additions should also be accounted for. See talks by D. Oliinychenko and V. Vovchenko.

#### Triton-proton/deuteron ratio



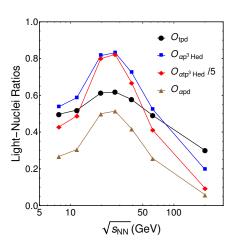
$$(g = 0.29)$$

\*Sun, Chen, Ko, Xu 2017, based on NA49 Coll. data

STAR Collaboration, preliminary 0%-10% (QM2018, arXiv:1909.07028)

#### Nuclei ratios

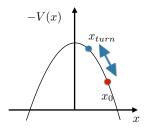
If clustering effects around  $T_c$  are the main source of the peak... explore  $^4$ He at the same energies!

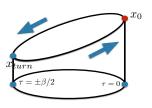


$$egin{aligned} \mathcal{O}_{lpha
ho^3\mathrm{He}d} &= rac{N_lpha N_p}{N_\mathrm{^3He}N_d} \sim \langle e^{-2V(x)/T}
angle \ \mathcal{O}_{lpha tp^3\mathrm{He}d} &= rac{N_lpha N_t N_p^2}{N_\mathrm{^3He}N_d^3} \sim \langle e^{-3V(x)/T}
angle \ \mathcal{O}_{lpha pd} &= rac{N_lpha N_p^2}{N_d^3} \sim \langle e^{-3V(x)/T}
angle \end{aligned}$$

#### Quantum effects in <sup>4</sup>He: Flucton solution

The flucton is a semiclassical solution of the EoMs in Euclidean time with period  $\beta = 1/T$  (Shuryak, 1988). Conceptually similar to the instanton.



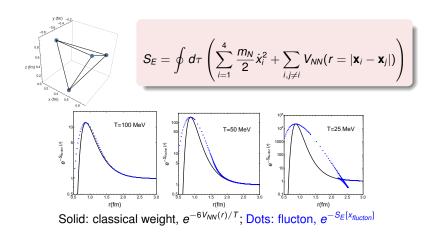


Unlike the instanton it is periodic  $x(\beta) = x(0) = x_0$ , and it does not require a double well. We applied it to 2,3,4-body systems at finite temperature (E.Shuryak, J.M.T.-R., arxiv: 1910.08119).

$$P(x_0) = \langle x_0 | e^{-\hat{H}\beta} | x_0 \rangle = \int_{x(0) = x_0}^{x(\beta) = x_0} \mathcal{D}x(\tau) \ e^{-S_E[x(\tau)]}$$



#### Flucton solution for <sup>4</sup>He

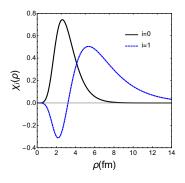


Quantum effects important at low temperatures or when  $V(r) \sim T$ 



#### K-harmonics: eigenstate

One can try to solve the Schrödinger equation for  ${}^{4}$ He. Dimensionality reduction  $\to K$ -harmonics (Badalyan, Simonov, 1966)



$$\frac{d^2\chi}{d\rho^2} - \frac{12}{\rho^2}\chi - \frac{2m_N}{\hbar^2}[W(\rho) + V_C(\rho) - E]\chi = 0$$

radial wave function:  $\chi(\rho)=\psi(\rho)\rho^4$  hyperdistance:  $\rho^2=\frac{1}{4}\left[\sum_{i\neq j}(\mathbf{x}_i-\mathbf{x}_j)^2\right]$ .  $W(\rho)$  contains NN interaction  $V_C(\rho)$  describes Coulomb repulsion

We reproduced the result for the ground state (Castilho Alcaras, Pimentel Escobar, 1974) and found an excited  $0^+$  state with  $E_B \simeq -3$  MeV.



#### Excited states of Helium 4

<sup>4</sup>He is peculiar: it has many excited states (www.nndc.bnl.gov/nudat2/)

| $J^P$   | $\Gamma~({\rm MeV})$                                                                                                                                                                                                 | decay modes, in %                                                                                                                                       |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| $0^{+}$ | 0.50                                                                                                                                                                                                                 | p = 100                                                                                                                                                 |
| 0-      | 0.84                                                                                                                                                                                                                 | n = 24, p = 76                                                                                                                                          |
| $2^{-}$ | 2.01                                                                                                                                                                                                                 | n = 37, p = 63                                                                                                                                          |
| $2^{-}$ | 5.01                                                                                                                                                                                                                 | n = 47, p = 53                                                                                                                                          |
| $1^{-}$ | 6.20                                                                                                                                                                                                                 | n = 45, p = 55                                                                                                                                          |
| $1^{-}$ | 6.10                                                                                                                                                                                                                 | n=47,p=50,d=3                                                                                                                                           |
| $0^{-}$ | 7.97                                                                                                                                                                                                                 | n = 48, p = 52                                                                                                                                          |
| $1^{-}$ | 12.66                                                                                                                                                                                                                | n = 48, p = 52                                                                                                                                          |
| $2^{+}$ | 8.69                                                                                                                                                                                                                 | n=3,p=3,d=94                                                                                                                                            |
| $1^{+}$ | 9.89                                                                                                                                                                                                                 | n=47,p=48,d=5                                                                                                                                           |
| $1^{-}$ | 3.92                                                                                                                                                                                                                 | n=2,p=2,d=96                                                                                                                                            |
| $2^{-}$ | 8.75                                                                                                                                                                                                                 | n=0.2,p=0.2,d=99.6                                                                                                                                      |
| 0-      | 4.89                                                                                                                                                                                                                 | d = 100                                                                                                                                                 |
| $2^{+}$ | 3.78                                                                                                                                                                                                                 | d = 100                                                                                                                                                 |
| $2^{+}$ | 9.72                                                                                                                                                                                                                 | n=0.4,p=0.4,d=99.2                                                                                                                                      |
|         | 0+<br>0-<br>0-<br>2-<br>2-<br>1-<br>1-<br>0-<br>1-<br>2+<br>1-<br>1-<br>2-<br>2-<br>1-<br>2+<br>1-<br>2-<br>2-<br>2-<br>2-<br>2-<br>1-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2-<br>2- | 0+ 0.50<br>0- 0.84<br>2- 2.01<br>2- 5.01<br>1- 6.20<br>1- 6.10<br>0- 7.97<br>1- 12.66<br>2+ 8.69<br>1+ 9.89<br>1- 3.92<br>2- 8.75<br>0- 4.89<br>2+ 3.78 |

- Statistical thermal model → all these states equally populated.
- They necessarily account for feed-down in t, d, p yields.
- Proposed nuclear ratios should include this feed-down in addition to the possible V<sub>NN</sub> modifications.

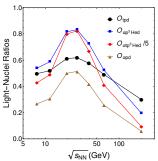
see V. Vovchenko's talk for an implementation of this feed-down using Thermal-FIST, and M. Lorenz's talk for application to HADES data.



#### Summary

- Close to  $T_c$  the critical mode becomes very light,  $m_\sigma \propto (T T_c)^{\nu}$
- Significant attractive and long-ranged NN potential near T<sub>c</sub>
   Modifications from usual (cold) nuclear matter potential
- Increased correlations among nucleons (proton kurtosis...)

  Mean field/Stosszahlansatz not enough to capture the whole physics
- Possible formation of pre-nuclei (statistical correlations among nucleons)
- Potential production of light nuclei  $(t, {}^{4}\text{He})$  at "critical"  $\sqrt{s_{NN}}$  Important feed-down from excited states of  ${}^{4}\text{He}$  at these energies



# Correlations, pre-clusters and light nuclei close to the hypothetical QCD critical point



Juan M. Torres-Rincon (Goethe University Frankfurt)



PRC 100 (2019) no.2, 024903 and arXiv:1910.08119 with E. Shuryak (Stony Brook U.)



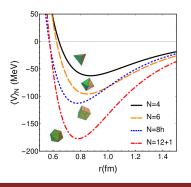


3rd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC Wrocław, December 2-6, 2019



#### Platonic solids

Few-body systems usually follow geometry arguments.



 $V_{A'}$  potential

#### Curious fact

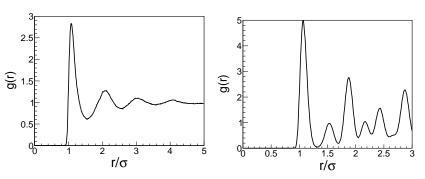
For N = 8 the cube is **not** the equilibrium configuration.

In a good approximation it is a square antiprism



# Strong correlations

Lennard-Jones potential, for N=108 Ar atoms, liquid vs solid



Boltzmann approximation assumes g(r) = 1 (dilute gas) Correlations are important in our system!

#### Scalar meson with full spectral width

$$V_{\sigma}(\mathbf{r}) = g_{\sigma}^{2} \int_{-\infty}^{\infty} dt \int_{-\infty}^{\infty} \frac{d^{4}p}{(2\pi)^{4}} e^{ip \cdot x} D_{\sigma}^{R}(p_{0}, \mathbf{p})$$

$$D_{\sigma}^{R}(p_{0}, \mathbf{p}) = -\int_{-\infty}^{\infty} d\omega \frac{\rho_{\sigma}(\omega, \mathbf{p})}{\omega - p_{0} - i\epsilon}$$

$$V_{\Lambda} \text{ with } m_{\sigma} = 500 \text{ MeV}$$

$$V_{\Lambda} \text{ with } m_{\sigma} = 285 \text{ MeV}$$

$$V_{\Lambda} \text{ with } m_{\sigma} = 285 \text{ MeV}$$

$$V_{\Lambda} \text{ from } \rho_{\sigma}(\omega, p) \text{ at } T = 0 \text{ MeV}$$

$$V_{\sigma} \text{ from } \rho_{\sigma}(\omega, p) \text{ at } T = 150 \text{ MeV}$$

$$V_{\sigma} \text{ from } \rho_{\sigma}(\omega, p) \text{ at } T = 150 \text{ MeV}$$

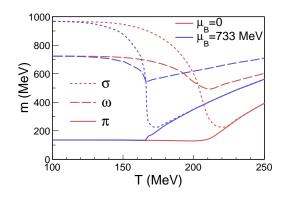
$$V_{\sigma} \text{ from } \rho_{\sigma}(\omega, p) \text{ at } T = 150 \text{ MeV}$$

$$V_{\sigma} \text{ from } \rho_{\sigma}(\omega, p) \text{ at } T = 150 \text{ MeV}$$

$$V_{\sigma} \text{ from } \rho_{\sigma}(\omega, p) \text{ at } T = 150 \text{ MeV}$$

Spectral function from quark-meson model using FRG. R.-A. Tripolt, Ph.D. Thesis 2015

# $\sigma$ and $\omega$ pole masses in PNJL model



JMT-R, 2018 ( $N_f = 3$  Polyakov-Nambu-Jona–Lasinio model)

- 80 %  $\sigma$  mass reduction at  $T_c$
- $\blacksquare$  25 %  $\omega$  mass reduction at  $T_c$

Caveat:  $\sigma$  is to be identified with  $f_0(980)$ 



#### BES STAR freeze out

We try to mimic as much as possible experimental situation in BES I, as measured by STAR @ RHIC (STAR Collab. 2016 & 2017)

- Temperature  $T \simeq 150 \text{ MeV}$
- Densities: 1-2 n<sub>0</sub>
- Finite time evolution: t = 5 fm
- Non-relativistic nucleon dynamics
- Fireball expansion: mapping of y and  $p_T$  distributions to experimental measured distributions
- Simulations: 32 nucleons, 10<sup>5</sup> events (similar to experiment for 5% most central events)
- Antinucleons: For  $\sqrt{s_{NN}}$  < 19.6 GeV they are suppressed, at least, a factor of 10 w.r.t. protons

**Note:** It is a crude model and several effects not covered. Understand as a first approximation to the physical situation.

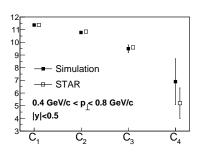


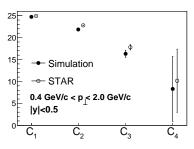
# Calibration at $\sqrt{s_{NN}} = 19.6 \text{ GeV}$

Poisson distribution at  $\sqrt{s_{NN}}=$  19.6 GeV  $\leftrightarrow$  Noncritical potential  $V_{A'}$ 

- $lacksquare |y| < 0.5, \quad 0.4 \ \mathrm{GeV/}c < p_{\perp} < 0.8 \ \mathrm{GeV/}c$
- $lacksquare |y| < 0.5, \quad 0.4 \ {
  m GeV}/c < p_{\perp} < 2 \ {
  m GeV}/c$

# protons





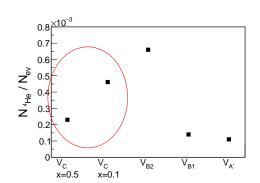
$$\textit{C}_1 = \langle \textit{N}_{\textit{p}} \rangle \; , \; \; \textit{C}_2 = \langle \delta \textit{N}_{\textit{p}}^2 \rangle \; , \; \; \textit{C}_3 = \langle \delta \textit{N}_{\textit{p}}^3 \rangle \; , \; \; \textit{C}_4 = \langle \delta \textit{N}_{\textit{p}}^4 \rangle - 3 \langle \delta \textit{N}_{\textit{p}}^2 \rangle^2$$



#### Light nuclei formation

Aggregation of few nucleons (**pre-clusters**) can be formed within few fm/c. We search 4 isolated nucleons close in phase space in the same simulation

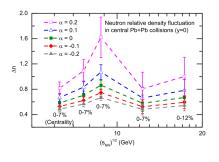
Nucleons belong to bigger clusters for these potentials



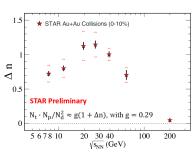
Close to  $T_c$ , we expect an excess of light nuclei over thermal expectations.

# Neutron density fluctuation

$$\frac{N_t N_p}{N_d^2} = g(1 + \Delta n) \qquad (\alpha = 0)$$



Sun, Chen, Ko, Xu 2017, based on NA49 Collab. data



STAR Collaboration (QM2018)