Correlations, pre-clusters and light nuclei close to the hypothetical QCD critical point

Juan M. Torres-Rincon (Goethe University Frankfurt)

PRC 100 (2019) no.2, 024903 and arXiv:1910.08119

with E. Shuryak (Stony Brook U.)

3rd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC Wrocław, December 2-6, 2019

- Motivation: QCD critical point
- Main idea: Critical mode and NN interaction
- Message: Strongly-correlated systems
- **Results I:** Nuclear correlations close to the critical region
- Results II: Pre-clusters and nuclear ratios
- Some comments: Quantum effects at finite T in ⁴He

Summary

 $\exists \rightarrow$

Image: S. Mukherjee (Brookhaven National Lab.)

 σ mass decreases close to the phase transition/critical point (correlation length ξ increases)

R.-A. Tripolt, Ph.D. Thesis, 2015 (quark-meson model with FRG approach)

 $m_{\sigma} \sim \frac{1}{\xi} \sim \left(\frac{|T-T_c|}{T_c}\right)^{\nu}$ (with ξ limited by finite lifetime effects)

Moments of the σ probability distribution

M. Stephanov, 2008 and 2011

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Critical mode couples to baryons

M. Stephanov, 2011

 $\mathcal{L}_{eff} = g \sigma p \bar{p}$

STAR Coll., 2015

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simple-as-possible (but not simpler) model for *NN* interaction due to **Serot-Walecka (1984)**

 $V_{A'}(r)$ allows for extra repulsion to match Bonn potential (Machleidt, 2000)

- Large cancellation between attraction and repulsion to produce bound nuclear matter
- A small imbalance would strongly modify the net potential!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NN potential modifications

- Close to T_c a very light σ enhances the attraction
- NN potential should be affected by the presence of the QCD critical point!
- We consider more and more attractive potentials:

- V_A: Serot-Walecka with MF parameters
- $V_{A'}$: extra repulsion $\alpha_{\omega} \rightarrow 1.4 \alpha_{\omega}$
- $V_{B1}: V_{A'} \text{ with } m_{\sigma}^2 \to m_{\sigma}^2/2, \\ \alpha_{\sigma} \to \alpha_{\sigma}/2$
- V_{B2} : $V_{A'}$ with $m_{\sigma}^2
 ightarrow m_{\sigma}^2/2$
- V_C : very light critical mode $V_C(x) = (1 - x)V_{B2} + xV_{A'}(m_{\sigma}^2 \to m_{\sigma}^2/6)$

Numerical study: Molecular Dynamics + Langevin

NN potential in a classical nonrelativistic Molecular Dynamics scheme

$$\begin{cases} \frac{d\vec{x}_i}{dt} &= \frac{\vec{p}_i}{m_N} \\ \frac{d\vec{p}_i}{dt} &= -\sum_{j\neq i} \frac{\partial V(|\vec{x}_i - \vec{x}_j|)}{\partial \vec{x}_i} - \lambda \vec{p}_i + \vec{\xi}_i \end{cases}$$

with Langevin dynamics,

$$\begin{array}{rcl} \langle \vec{\xi_i}(t) \rangle &=& 0 \\ \langle \xi_i^a(t) \xi_j^b(t') \rangle &=& 2 T \lambda m_N \delta^{ab} \delta_{ij} \delta(t-t') \end{array}$$

where a, b = 1, 2, 3 and

$$\lambda = T/(m_N D_B)$$

with D_B the baryon diffusion coefficient

Quantum effects neglected at freeze-out temperatures (see later)

A B > A B >

Small clusters, N = 4

Juan M. Torres-Rincon Correlations, pre-clusters and light nuclei 10

Big clusters, N = 128

At large N the potential energy always wins over entropy: clustering effect.

This is just an illustrative example: unreachable time scales for HICs!

Strongly correlated system $(P/K \simeq O(N) > 1)$: beyond mean field

Infinite systems: internal structure described by **pair correlation function** g(r) e.g. liquid Argon (N = 108) via Lennard-Jones potential

 Approaches based on Boltzmann assumptions would NOT capture the whole effect (similar idea in E. Bratkovskaya's talk)

Approaching the physical case

Effects preventing clustering

- Expansion, radial collective flow
- Freeze-out temperatures T ~ 150 MeV
- Finite time effects (duration of hadronic phase)

We need to address these for RHIC collisions at the Beam Energy Scan

Focus on BES I at $\sqrt{s_{N\!N}} <$ 19.6 GeV, as measured by STAR @ RHIC (STAR Collab. 2016 & 2017)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Few-body correlations should contribute to proton moments

Scaled kurtosis: $\kappa \sigma^2 = C_4/C_2$

Expected increase with enhanced attraction, esp. in the wider p_{\perp} window.

Pre-clusters to light nuclei: Triton-proton/deuteron ratio

$$rac{N_tN_p}{N_d^2}=g$$
 $(g=0.29)$

We assume that the statistical (Boltzmann) weights give a good overall description (see P. Braun-Munzinger's talk)

$$N = Vol \; rac{(2S+1)}{2\pi^2} m^2 T \; K_2(m/T) \exp\left(rac{B\mu_B + q\mu_q}{T}
ight)$$

Ratio considered before by Sun, Chen, Ko, Xu (2017) with a similar motivation (critical point) but a different (?) perspective (coalescence) (see C.-M. Ko's talk)

くロト くぼト くほと くほと

$$g^{-1} rac{N_t N_p}{N_d^2} \sim \left\langle e^{-rac{V(x)}{T}}
ight
angle \qquad (g=0.29)$$

V(x) is the NN potential, non negligible close to T_c

Important: For the measured multiplicities, feed-down additions should also be accounted for. *See talks by D. Oliinychenko and V. Vovchenko.*

★ ∃ > < ∃ >

Triton-proton/deuteron ratio

If clustering effects around T_c are the main source of the peak... explore ⁴He at the same energies!

The flucton is a semiclassical solution of the EoMs in Euclidean time with period $\beta = 1/T$ (Shuryak, 1988). Conceptually similar to the instanton.

Unlike the instanton it is periodic $x(\beta) = x(0) = x_0$, and it does not require a double well. We applied it to 2,3,4-body systems at finite temperature (E.Shuryak, J.M.T.-R., arxiv: 1910.08119).

$$P(x_0) = \langle x_0 | e^{-\hat{H}\beta} | x_0 \rangle = \int_{x(0)=x_0}^{x(\beta)=x_0} \mathcal{D}x(\tau) \ e^{-\mathcal{S}_E[x(\tau)]}$$

Flucton solution for ⁴He

Quantum effects important at low temperatures or when $V(r) \sim T$

K-harmonics: eigenstate

One can try to solve the Schrödinger equation for ⁴He. Dimensionality reduction \rightarrow *K*-harmonics (Badalyan, Simonov, 1966)

$$\frac{d^2\chi}{d\rho^2} - \frac{12}{\rho^2}\chi - \frac{2m_N}{\hbar^2}[W(\rho) + V_C(\rho) - E]\chi = 0$$

radial wave function: $\chi(\rho) = \psi(\rho)\rho^4$ hyperdistance: $\rho^2 = \frac{1}{4} \left[\sum_{i \neq j} (\mathbf{x}_i - \mathbf{x}_j)^2 \right]$. $W(\rho)$ contains *NN* interaction $V_C(\rho)$ describes Coulomb repulsion

We reproduced the result for the ground state (Castilho Alcaras, Pimentel Escobar, 1974) and found an excited 0⁺ state with $E_B \simeq -3$ MeV.

E (MeV)	J^P	Γ (MeV)	decay modes, in %
20.21	0^+	0.50	p = 100

⁴He is peculiar: it has many excited states (*www.nndc.bnl.gov/nudat2/*)

$E \ (MeV)$	J^P	$\Gamma (MeV)$	decay modes, in %
20.21	0^+	0.50	p = 100
21.01	0^{-}	0.84	n = 24, p = 76
21.84	2^{-}	2.01	n = 37, p = 63
23.33	2^{-}	5.01	n = 47, p = 53
23.64	1^{-}	6.20	n = 45, p = 55
24.25	1^{-}	6.10	n = 47, p = 50, d = 3
25.28	0^{-}	7.97	n = 48, p = 52
25.95	1^{-}	12.66	n = 48, p = 52
27.42	2^{+}	8.69	n = 3, p = 3, d = 94
28.31	1^{+}	9.89	n = 47, p = 48, d = 5
28.37	1^{-}	3.92	n = 2, p = 2, d = 96
28.39	2^{-}	8.75	n = 0.2, p = 0.2, d = 99.6
28.64	0^{-}	4.89	d = 100
28.67	2^{+}	3.78	d = 100
29.89	2^{+}	9.72	n = 0.4, p = 0.4, d = 99.2

- They necessarily account for feed-down in t, d, p yields.
- Proposed nuclear ratios should include this feed-down in addition to the possible V_{NN} modifications.

→ B → < B</p>

see V. Vovchenko's talk for an implementation of this feed-down using Thermal-FIST, and M. Lorenz's talk for application to HADES data.

Summary

- Close to T_c the critical mode becomes very light, $m_\sigma \propto (T T_c)^{\nu}$
- Significant attractive and long-ranged NN potential near T_c Modifications from usual (cold) nuclear matter potential
- Increased correlations among nucleons (proton kurtosis...) Mean field/Stosszahlansatz not enough to capture the whole physics
- Possible formation of pre-nuclei (statistical correlations among nucleons)
- Potential production of light nuclei (t, ⁴He) at "critical" $\sqrt{s_{NN}}$ Important feed-down from excited states of ⁴He at these energies

3 > 4 3

Correlations, pre-clusters and light nuclei close to the hypothetical QCD critical point

Juan M. Torres-Rincon (Goethe University Frankfurt)

PRC 100 (2019) no.2, 024903 and arXiv:1910.08119

with E. Shuryak (Stony Brook U.)

3rd EMMI Workshop: Anti-matter, hyper-matter and exotica production at the LHC Wrocław, December 2-6, 2019 Few-body systems usually follow geometry arguments.

Curious fact

For N = 8 the cube is **not** the equilibrium configuration.

In a good approximation it is a square antiprism

Boltzmann approximation assumes g(r) = 1 (dilute gas) Correlations are important in our system!

Scalar meson with full spectral width

Spectral function from quark-meson model using FRG. R.-A. Tripolt, Ph.D. Thesis 2015

くロト くぼト くほと くほと

JMT-R, 2018 ($N_f = 3$ Polyakov-Nambu-Jona–Lasinio model)

80 % σ mass reduction at T_c

25 % ω mass reduction at T_c

Caveat: σ is to be identified with $f_0(980)$

We try to mimic as much as possible experimental situation in BES I, as measured by STAR @ RHIC (STAR Collab. 2016 & 2017)

- Temperature T ≃ 150 MeV
- Densities: 1-2 n₀
- Finite time evolution: t = 5 fm
- Non-relativistic nucleon dynamics
- Fireball expansion: mapping of y and p_T distributions to experimental measured distributions
- Simulations: 32 nucleons, 10⁵ events (similar to experiment for 5% most central events)
- Antinucleons: For √s_{NN} < 19.6 GeV they are suppressed, at least, a factor of 10 w.r.t. protons</p>

Note: It is a crude model and several effects not covered. Understand as a first approximation to the physical situation.

くロト くぼト くほと くほと

Poisson distribution at $\sqrt{s_{NN}} = 19.6 \text{ GeV} \leftrightarrow \text{Noncritical potential } V_{A'}$

■ |y| < 0.5, 0.4 GeV/ $c < p_{\perp} < 0.8$ GeV/c■ |y| < 0.5, 0.4 GeV/ $c < p_{\perp} < 2$ GeV/c

 $C_1 = \langle N_\rho \rangle \;, \;\; C_2 = \langle \delta N_\rho^2 \rangle \;, \;\; C_3 = \langle \delta N_\rho^3 \rangle \;, \;\; C_4 = \langle \delta N_\rho^4 \rangle - 3 \langle \delta N_\rho^2 \rangle^2$

protons

→ ∃ →

Aggregation of few nucleons (**pre-clusters**) can be formed within few fm/*c*. We search 4 isolated nucleons close in phase space in the same simulation

Close to T_c , we expect an excess of light nuclei over thermal expectations.

Neutron density fluctuation

Sun, Chen, Ko, Xu 2017, based on NA49 Collab. data

STAR Collaboration (QM2018)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >