pNRQCD for the study of nonequilibrium evolution of quarkonium in a medium

M. Escobedo

pNRQCD and open quantum system, singlet and octet density master evolution equations, Lindblad equations

Results obtained in collaboration with:

M. Escobedo, A. Vairo, J. Soto (van der Griend) N.B. (master equations);

based on

(1) N. Brambilla, M.A. Escobedo, A. Vairo and P. Vander Griend Transport coefficients from in medium quarkonium dynamics arXiv:1903.08063

(2) N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo

Heavy quarkonium suppression in a fireball

Phys. Rev. D97 (2018) 074009 arXiv:1711.04515

(3) N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo

Quarkonium suppression in heavy-ion collisions: an open quantum system approach

Phys. Rev. D96 (2017) 034021 arXiv:1612.07248

Quarkonium in a fireball

- After the heavy-ion collisions, heavy quark-antiquarks propagate freely up to 0.6 fm.
- From 0.6 fm to the freeze-out time t_F they propagate in the medium.
- We assume the medium infinite, homogeneous and isotropic.
- We assume the heavy quarks comoving with the medium.
- We assume the medium to be locally in thermal equilibrium,
 i.e., the temperature T of the medium changes (slowly) with time:

$$T=T_0\left(rac{t_0}{t}
ight)^{v_s^2},\quad t_0=0.6~{
m fm},\quad v_s^2=rac{1}{3}~{
m (sound\ velocity)}$$

Quarkonium as a Coulombic bound state

The lowest quarkonium states (1S bottomonium and charmonium, 2S bottomonium) are the most tightly bound. For these we assume the hierarchy of energy scales

$$M\gg rac{1}{r}\sim Mlpha_{
m s}\gg T\sim gT\gg$$
 any other scale, $v\simlpha_{
m s}$

Density matrices

- Subsystem: heavy quarks/quarkonium
- Environment: quark gluon plasma

We may define a density matrix in pNRQCD for the heavy quark-antiquark pair in a singlet and octet configuration:

$$\langle \mathbf{r}', \mathbf{R}' | \rho_s(t';t) | \mathbf{r}, \mathbf{R} \rangle \equiv \operatorname{Tr} \{ \rho_{\text{full}}(t_0) S^{\dagger}(t, \mathbf{r}, \mathbf{R}) S(t', \mathbf{r}', \mathbf{R}') \}$$

$$\langle \mathbf{r}', \mathbf{R}' | \rho_o(t';t) | \mathbf{r}, \mathbf{R} \rangle \frac{\delta^{ab}}{8} \equiv \operatorname{Tr} \{ \rho_{\text{full}}(t_0) O^{a\dagger}(t, \mathbf{r}, \mathbf{R}) O^b(t', \mathbf{r}', \mathbf{R}') \}$$

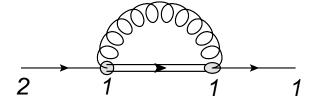
 $t_0 \approx 0.6$ fm is the time formation of the plasma.

The system is in non-equilibrium because through interaction with the environment (quark gluon plasma) singlet and octet quark-antiquark states continuously transform in each other although the number of heavy quarks is conserved: $\text{Tr}\{\rho_s\} + \text{Tr}\{\rho_o\} = 1$.

$$\frac{\partial_{t}\rho_{s} = -i[h_{s}, \rho_{s}] - i\Sigma\rho_{s} + i\rho_{s}\Sigma^{\dagger} + \mathcal{F}(\rho_{o})}{2}$$

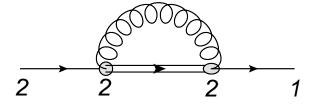
We use the non-equilibrium quantum field theory formalism to perform this computation. Tree level is equivalent to the $\,T=0\,$ LO evolution

$$\partial_t \rho_S = -i[h_s, \rho_s] - i \Sigma \rho_s + i \rho_s \Sigma^{\dagger} + \mathcal{F}(\rho_o)$$



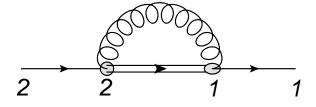
Self-energy diagram contributes to screening and to the decay width.

$$\partial_t \rho_S = -i[h_s, \rho_s] - i\Sigma \rho_s + i\rho_s \Sigma^{\dagger} + \mathcal{F}(\rho_o)$$



Hermitian conjugate of the previous diagram. We can reorganize this to diagrams in a redefinition of h_s and a term that represents the decay width.

$$\partial_t \rho_S = -i[h_s, \rho_s] - i\Sigma \rho_s + i\rho_s \Sigma^{\dagger} + \mathcal{F}(\rho_o)$$



The number of singlets is increased due to the octets in the medium that absorb a gluon.

Evolution of the octet

Very similar reasoning.

$$\partial_t \rho_o = -i[H_o, \rho_o] - \frac{1}{2} \{\Gamma, \rho_o\} + \mathcal{F}_1(\rho_s) + \mathcal{F}_2(\rho_o)$$

- Computationally costly system of coupled equations. The density matrix contains many information, especially in the non-Abelian case (QCD).
- Total number of heavy particles is conserved. $Tr(\rho_s) + Tr(\rho_o)$ is a constant of the evolution.
- Only if $T \gg E$ the interaction with the medium can be considered local in time and the evolution is Markovian.

Time scales

- Environment correlation time $au_{\it E} \sim {1 \over T}$.
- System intrinsic time scale $au_{\mathcal{S}} \sim \frac{1}{E}.$
- System relaxation time $\tau_R \sim \frac{1}{\Sigma} \sim \frac{1}{\alpha_s a_0^2 \Lambda^3}$ where Λ is either T or E depending on the temperature regime.

Time scales

- Environment correlation time $au_{\it E} \sim {1 \over T}$.
- System intrinsic time scale $au_{\mathcal{S}} \sim \frac{1}{E}.$
- System relaxation time $\tau_R \sim \frac{1}{\Sigma} \sim \frac{1}{\alpha_s a_0^2 \Lambda^3}$ where Λ is either T or E depending on the temperature regime.
- Because $\frac{1}{r} \gg T$, E, it follows that τ_R is the longest time scale. Markovian approximation.
- If $T\gg E$ then $\tau_S\gg \tau_E$, the interaction with the medium is instantaneous from the point of view of the system. Lindblad equation limit.

The $\frac{1}{r} \gg T$, $m_D \gg E$ regime Brambilla, M.A.E., Soto and Vairo (2017-2018)

$$\partial_{t}\rho = -i[H(\gamma), \rho] + \sum_{k} (C_{k}(\kappa)\rho C_{k}^{\dagger}(\kappa) - \frac{1}{2} \{C_{k}^{\dagger}(\kappa)C_{k}(\kappa), \rho\})$$
$$\kappa = \frac{g^{2}}{6N_{c}} \operatorname{Re} \int_{-\infty}^{+\infty} ds \, \langle \operatorname{T} E^{a,i}(s, \mathbf{0})E^{a,i}(0, \mathbf{0}) \rangle$$

The heavy quark diffusion coefficient

$$\gamma = \frac{g^2}{6 N_c} \operatorname{Im} \int_{-\infty}^{+\infty} ds \, \langle \operatorname{T} E^{a,i}(s, \mathbf{0}) E^{a,i}(0, \mathbf{0}) \rangle$$

No lattice QCD information on γ but we observe that we reproduce data better if it is small. For comparison, in pQCD

$$\gamma = -2\zeta(3) C_F \left(\frac{4}{3}N_c + n_f\right) \alpha_s^2(\mu_T) T^3 \approx -6.3 T^3$$

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ 釣 ♀ ○

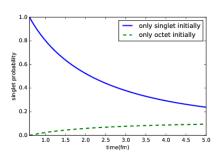
8 / 13

pNRQCD approach 19th of December, 2019

Approach to equilibrium in the static limit

We assume that $\frac{\kappa}{T^3}$ is a constant. Then, $\Gamma(T) = \Gamma(T_0) \left(\frac{T}{T_0}\right)^3$. In the static limit we can solve the equation analytically using Bjorken evolution, the approach to equilibrium is power like.

$$\rho_{s}(t) = \frac{1}{9} - \frac{8}{9} \left(\frac{\rho_{o}(t_{0})}{8} - \rho_{s}(t_{0}) \right) \left(\frac{t_{0}}{t} \right)^{\frac{9}{8}\Gamma(T_{0})t_{0}}$$



pNRQCD approach

Initial conditions

At any point in time, our density matrix is diagonal by boxes in colour space

$$\rho(t) = \left(\begin{array}{cc} \rho_s(t) & 0 \\ 0 & \rho_o(t) \end{array} \right).$$

Initial conditions

At any point in time, our density matrix is diagonal by boxes in colour space

$$\rho(t) = \left(\begin{array}{cc} \rho_s(t) & 0 \\ 0 & \rho_o(t) \end{array} \right).$$

Physical insight

- The production of a heavy quark pair is a high energy process.
- The production of a pair in a singlet state is suppressed by a factor $\alpha_s(m)$ with respect to that of the octet.

Initial conditions

At any point in time, our density matrix is diagonal by boxes in colour space

$$ho(t) = \left(egin{array}{cc}
ho_s(t) & 0 \ 0 &
ho_o(t) \end{array}
ight) \, .$$

Physical insight

- The production of a heavy quark pair is a high energy process.
- The production of a pair in a singlet state is suppressed by a factor $\alpha_s(m)$ with respect to that of the octet.

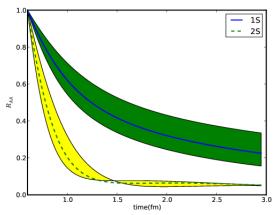
Initial conditions

- We take as initial condition $\rho_s(0) = A|\mathbf{r} = \mathbf{0}\rangle\langle\mathbf{r} = \mathbf{0}|$ and $\rho_o(0) = \frac{\delta}{\alpha_s(m)}\rho_s(0)$. Then, we evolve the density matrix in the vacuum from t=0 to $t=t_0=0.6$ fm.
- \bullet δ is a free parameter. However, we observe that the results depend very little on its value.

R_{AA}

We compute R_{AA} (before feed-down) using the formula

$$R_{AA}(n) = rac{\langle n |
ho(t_f) | n \rangle}{\langle n |
ho(t_0) | n \rangle}$$



Quantum coherence

- The evolution equations that we are able to deduce by systematically exploiting the separation between energy scales are quantum.
- Approximations that can lead to simplifications (like semi-classical equations), as for example the rotating wave approximation or multiple-scale analysis, are not fully compatible with a systematic expansion of ratios of energy scales.
- At the moment, it is difficult to determine quantitatively the importance of quantum coherence.
- Quantum coherence might force us to change how we think about initial conditions. Not in terms of probabilities, but in terms of density matrix.

Future improvements

Beyond Bjorken evolution

- Due to the high numerical cost of our computations, we have only implemented Bjorken evolution. This overestimates suppression.
- We are studying how to reduce this cost. When this is done we will implement more realistic hydro.
- We have calculated the binding energy and decay width in an anisotropic plasma. (Biondini, Brambilla, Escobedo and Vairo (2017)).

Future improvements

Beyond Bjorken evolution

- Due to the high numerical cost of our computations, we have only implemented Bjorken evolution. This overestimates suppression.
- We are studying how to reduce this cost. When this is done we will implement more realistic hydro.
- We have calculated the binding energy and decay width in an anisotropic plasma. (Biondini, Brambilla, Escobedo and Vairo (2017)).

Quarkonium in a hot wind

We have also studied how the potential, the binding energy and the decay width are modified when quarkonium is moving with a finite velocity with respect to the medium. This might be important for the R_{AA} dependence with transverse momentum. (Escobedo, Giannuzzi, Mannarelli and Soto (2013)).

Future improvements II

- Use more realistic initial conditions.
- Use more recent determinations of κ and γ and include a more complex temperature dependence.
- Relax the assumption $T \gg E$.