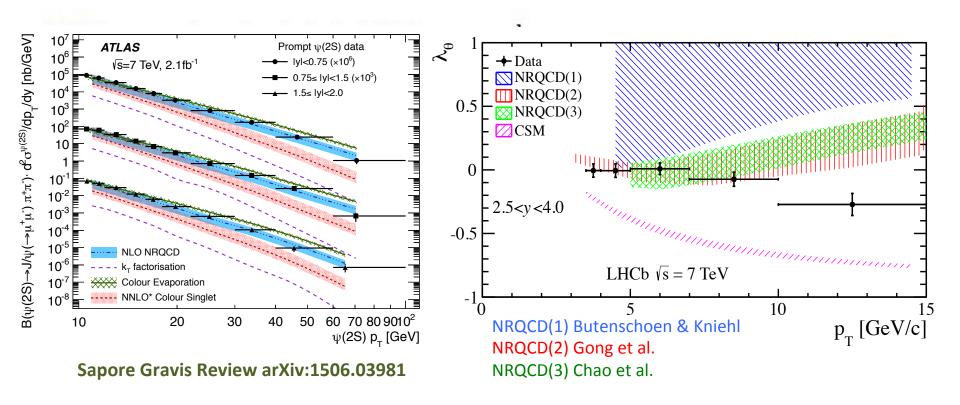

EMMI Rapid Reaction Task Force (RRTF) Suppression and (re)generation of quarkonium in heavy-ion collisions at the LHC

Some notes about pp and more...


Elena G. Ferreiro

Universidade de Santiago de Compostela, Spain

At low and mid p_T —which is the region where quarkonium heavy-ion studies are mainly carried out— none of the models can simply be ruled out owing to their theoretical uncertainties (heavy-quark mass, scales, non-perturbative parameters, unknown QCD and relativistic corrections, ...).

State of the art for the $\Psi(2S)$

At low and mid p_T —which is the region where quarkonium heavy-ion studies are mainly carried out— none of the models can simply be ruled out owing to their theoretical uncertainties (heavy-quark mass, scales, non-perturbative parameters, unknown QCD and relativistic corrections, ...).

State of the art for the Y

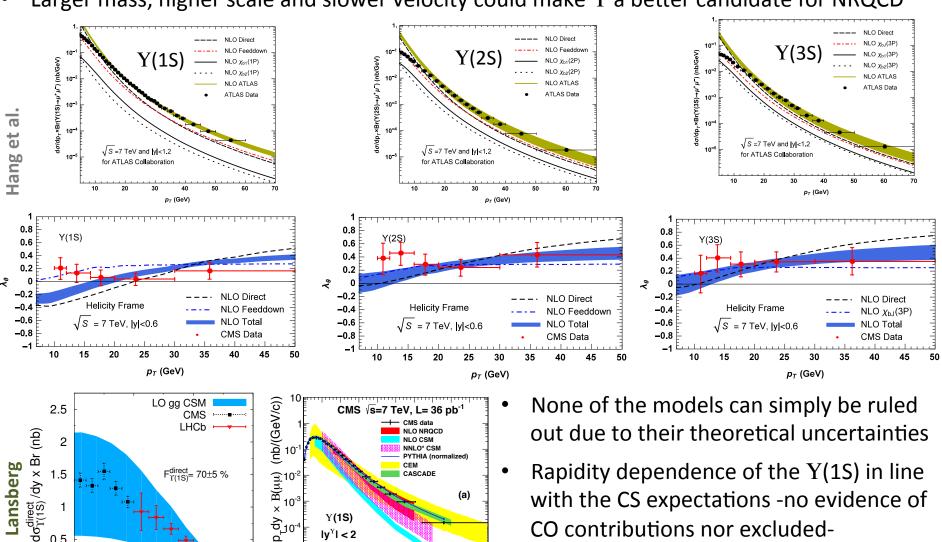
×

6

0.5

0

0

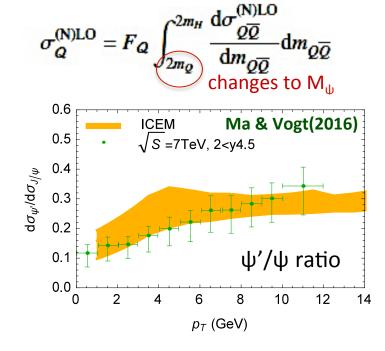

2

d₂/db/α/₁₀

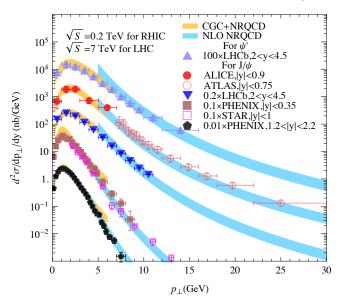
Y(1S)

10 15 20 25 30 35

Larger mass, higher scale and slower velocity could make Y a better candidate for NRQCD



- with the CS expectations -no evidence of CO contributions nor excluded-
- In general, LHC data are much more precise than theory


(GeV/c)

New developments on production

- Color Evaporation Model (CEM) Improved
- Explicit charmonium mass dependence => ψ'/ψ ratio no longer p_T independent
- Relates $\langle p_{\psi} \rangle$ to the $c\bar{c}$ pair momentum => explain the high p_{τ} data better
- LO calculation of quarkonium polarization in the CEM, longitudinal polarized @ LHC Cheung & Vogt(2017)

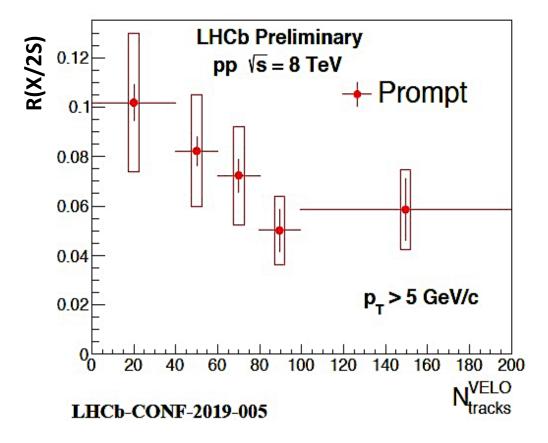
Saturation meets NRQCD

- Uses Color Glass Condensate saturation model of gluon distributions in the proton with NLO NRQCD matrix elements
- Saturation physics at low p_T , normal collinear factorization at high p_T , matching at intermediate p_T

Ma, Venugopalan & Zhang (2015)

New observables

Observables	Experiments	CSM	CEM	NRQCD	Interest
J/ψ+J/ψ	LHCb, CMS, ATLAS, D0 (+NA3)	NLO, NNLO*	LO?	LO	Prod. Mechanism (CS dominant) + DPS + gluon TMD
J/ψ+D	LHCb	LO	LO?	LO	Prod. Mechanism (c to J/psi fragmentation) + DPS
Ϳ/ψ+ϒ	D0	(N)LO	LO?	LO	Prod. Mechanism (CO dominant) + DPS
J/ψ+hadron	STAR	LO		LO	B feed-down; Singlet vs Octet radiation
J/ψ+Z	ATLAS	NLO	NLO	Partial NLO	Prod. Mechanism + DPS
J/ψ+W	ATLAS	LO	LO?	Partial NLO	Prod. Mechanism (CO dominant) + DPS
J/ψ vs mult.	ALICE,CMS (+UA1)				Density effects (Saturation/Hydro)
J/ψ+b	(LHCb, D0, CMS ?)			LO	Prod. Mechanism (CO dominant) + DPS
Y+D	LHCb	LO	LO?	LO	DPS
Υ+γ		NLO, NNLO*	LO?	LO	Prod. Mechanism (CO LDME mix) + gluon TMD/PDF
Y vs mult.	CMS				Density effects (Saturation/Hydro)
Y+Z		NLO	LO?	LO	Prod. Mechanism + DPS
Υ+Υ	CMS	NLO?	LO?	LO?	Prod. Mechanism + DPS + gluon TMD
					Lansberg (2018)
. G. Ferreiro USC			Como	vers	GSI 16/20 Dec 20


New observables

Observables	Experiments	CSM	CEM	NRQCD Interest
J/ψ+J/ψ	LHCb, CMS, ATLAS, D0 (+NA3)	NLO, NNLO*	LO?	LO 0.5 CMS pp \(\sigma = 2.76 \) TeV CMS pPb \(\sigma_{NN} = 5.02 \) TeV
J/ψ+D	LHCb	LO	LO?	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
J/ψ+Υ	D0	(N)LO	LO?	LO 0.35
J/ψ+hadron	STAR	LO		LO 0.3
J/ψ+Z	ATLAS	NLO	NLO	Par 0.25 NL(0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
J/ψ+W	ATLAS	LO	LO?	Par 0.15 P
J/ψ vs mult.	ALICE,CMS (+UA1)			0.05
J/ψ+b	(LHCb, D0, CMS ?)			LO 0 20 40 60 80 100 120 140 N _{tracks}
Y+D	LHCb	LO	LO?	LO UPS
Υ+γ		NLO, NNLO*	LO?	LO Prod. Mechanism (CO LDME mix) + gluon TMD/PDF
Y vs mult.	CMS			Density effects (Saturation/Hydro)
Y+Z		NLO	LO?	LO Prod. Mechanism + DPS
Υ+Υ	CMS	NLO?	LO?	LO? Prod. Mechanism + DPS + gluon TMD
				Lansberg (2018)
E. G. Ferreiro USC			Como	overs GSI 16/20 Dec 2019

The nature of the X(3872)

In collaboration with L. Maiani, A. Polosa and C. Salgado

Motivation: recent LHCb results on X(3872) versus multiplicity

The nature of the X(3872): interaction cross sections

Considering the following binding energies and sizes:

S	$E_{\rm thr}^{Q}$	ra	$\sigma_{\mathrm{geo}}^{Q}$
ψ(2S)	50 MeV	0.45 fm	6.36 mb
X(3872) tetraquark	21 MeV	0.65 fm	13.27 mb
X(3872) molecular	0.01 MeV	3.5 fm	384.84 mb

For the 2S: Satz 0512217 For the X tetraquark: Esposito, Polosa 1807.06040 Maiani et al. 0412098 For X molecular: Beveren & Rupp

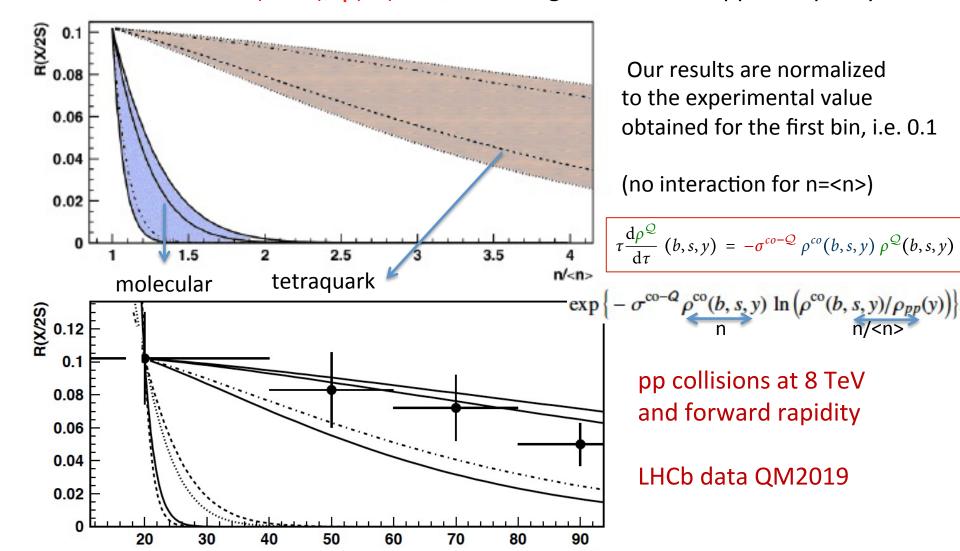
Applying the formulae for interaction with the medium:

$$\sigma^{co-\mathcal{Q}_{b\bar{b}}} = \sigma_{\text{geom}} \left(1 - \frac{E_{\text{Binding}}}{E_{co}}\right)^n$$

$$E_{\text{Binding}} \equiv 2M_B - M_{\mathcal{Q}_{b\bar{b}}}, i.e. \text{ the threshold energy}$$

$$E^{co} = \sqrt{p^2 + m_{co}^2} \text{ the average energy of the comovers}$$

 $E^{co} = \sqrt{p^2 + m_{co}^2}$ the average energy of the comovers


Average over Bose-Einstein distribution of the medium: $\int_{E_{\text{thr}}^{Q}} dE^{\text{co}} \mathcal{P}(E^{\text{co}}; T_{\text{eff}}) \sigma^{\text{co-}Q}(E^{\text{co}})$ $\mathcal{P}(E^{\text{co}}; T_{\text{eff}}) \propto 1/(e^{E^{\text{co}}/T_{eff}} - 1)$ $\langle \sigma^{\text{co-}Q} \rangle (T_{\text{eff}}, n) = \frac{1}{2}$ $\int_{E^0}^{\infty} dE^{\rm co} \mathcal{P}(E^{\rm co}; T_{\rm eff})$

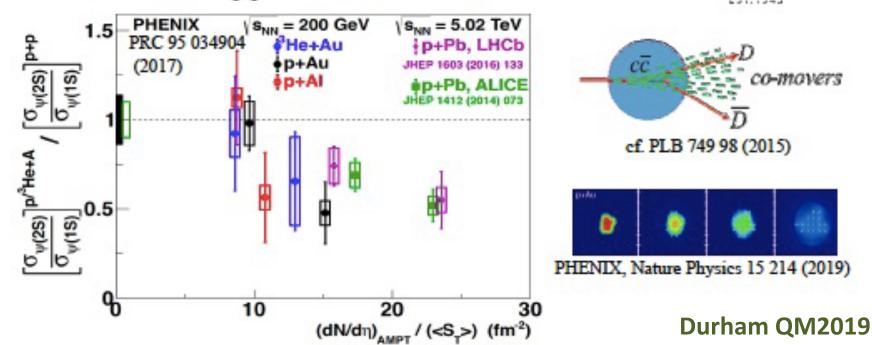
With the above values, our results for the averaged comover cross sections are: 5.15 ± 0.84 , 11.10 ± 1.56 and 329.43 ± 0.84 55.39 mb for the $\psi(2S)$, X(3872) tetraquark and the X(3872)molecular state, respectively. The uncertainty corresponds to the one of the temperature and the nature of the medium, of gluonic or hadronic nature.

Cross sections very close to their geometrical value due to small binding energies

The nature of the X(3872): pp collisions WORK IN PROGRESS

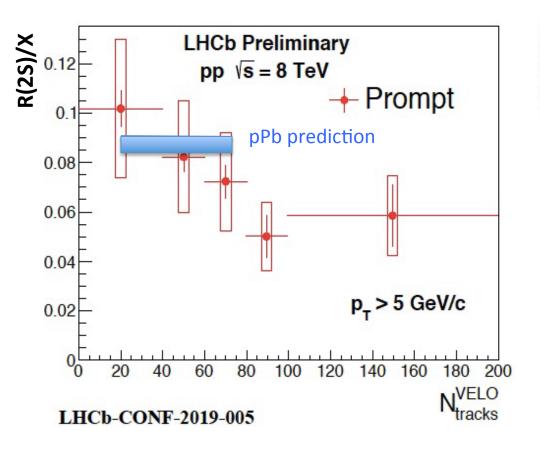
In order to measure the effects of the comovers with increasing multiplicity, we calculate the rate $X(3872)/\psi(2S)$ vs n/<n> being <n> the mean pp multiplicity

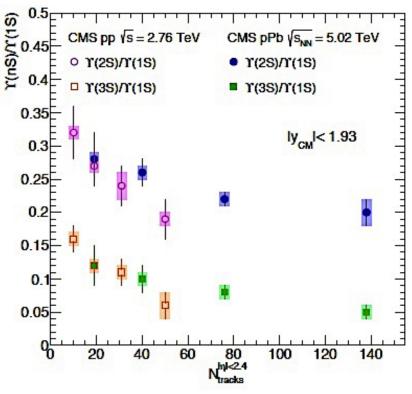
E. G. Ferreiro USC Comovers GSI 16/20 Dec 2019


nch

The nature of the X(3872): proton+proton collisions

 Suppression of weakly-bound quarkonia states has bee studied for decades in pA collisions


• Ratios of
$$\psi^{(2S)}/J/\psi$$
 and $\Upsilon^{(2S,3S)}/\Upsilon^{(1S)}$


 In general, final state effects are required to explain difference in suppression between states

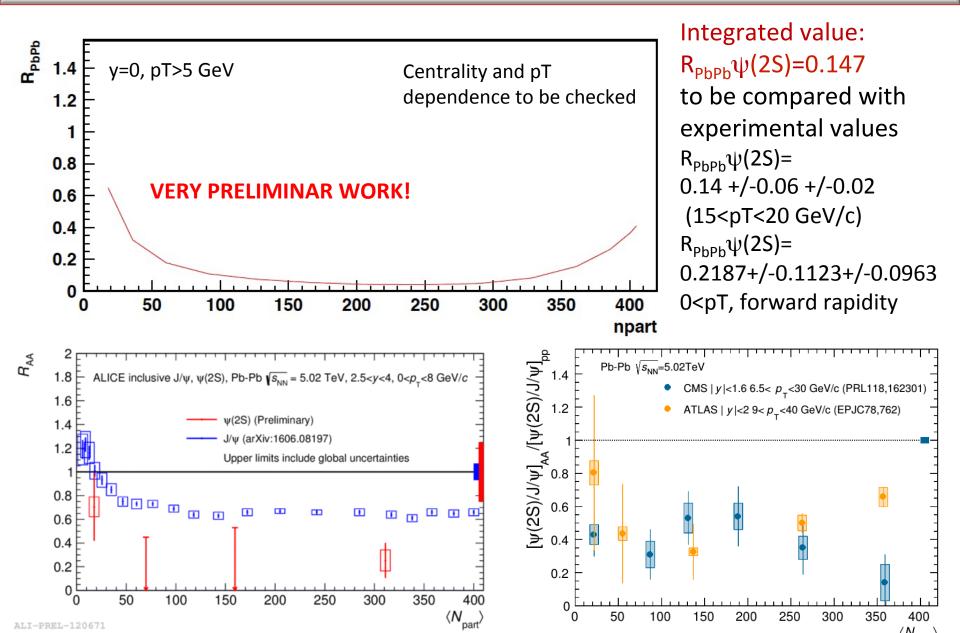
The nature of the X(3872): pp & pPb collisions WORK IN PROG

In fact, the effect found by LHCb is similar to the one previously found by CMS

Preliminar results from the comover interaction model seem to favorize the tetraquark interpretation

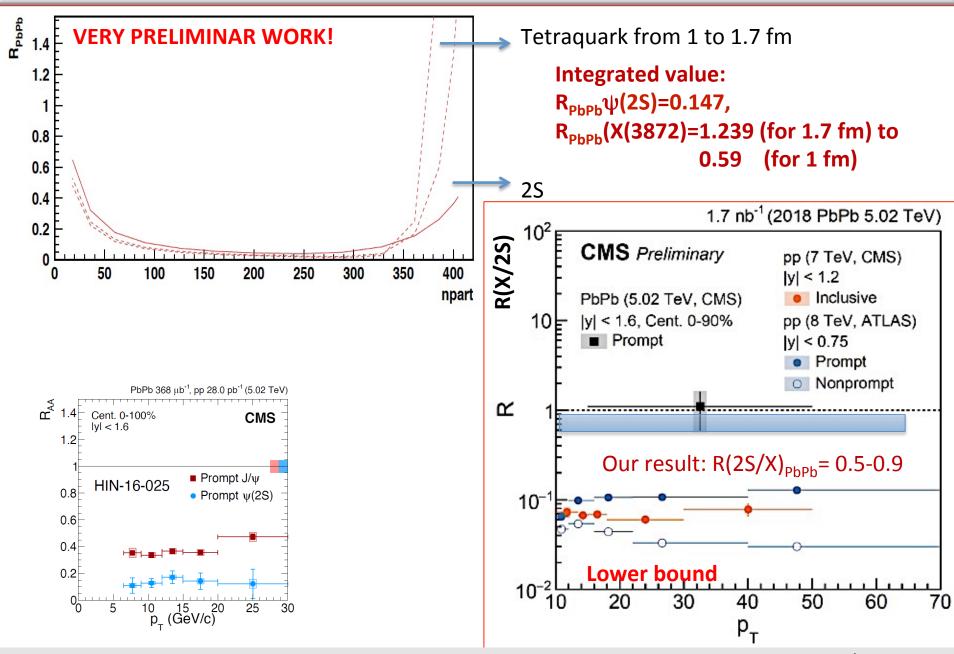
The nature of the X(3872): PbPb collisions

• In case of PbPb collisions, it is neccessary to include recombination


$$\tau \frac{\mathrm{d}\rho^{\mathcal{Q}}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\mathcal{Q}} \rho^{co}(b, s, y) \rho^{\mathcal{Q}}(b, s, y)$$

$$\tau \frac{\mathrm{d}\rho^{\mathcal{Q}}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\mathcal{Q}} [\rho^{co}(b, s, y) \rho^{\mathcal{Q}}(b, s, y) - \rho_{c}(b, s, y) \rho_{c}(b, s, y)]$$

$$\pi^{\mathrm{d}\rho^{\mathcal{Q}}} (b, s, y) = -\sigma^{co-\mathcal{Q}} [\rho^{co}(b, s, y) \rho^{\mathcal{Q}}(b, s, y) - \rho_{c}(b, s, y) \rho_{c}(b, s, y)]$$


It is driven by the number of c cbar pairs

PbPb collisions at 5 TeV: result for $\Psi(2S)$

 $\langle N_{\rm part} \rangle$

PbPb collisions at 5 TeV: result for $\Psi(2S)$ & X(3872)

