Some notes about comovers

Elena G. Ferreiro

Universidade de Santiago de Compostela, Spain

In collaboration with Jean-Philippe Lansberg

$$\tau \frac{\mathrm{d}\rho^{\mathcal{Q}}}{\mathrm{d}\tau} (b, s, y) = -\sigma^{co-\mathcal{Q}} \rho^{co}(b, s, y) \rho^{\mathcal{Q}}(b, s, y) \qquad \sigma^{co-\mathcal{Q}_{b\bar{b}}} = \sigma_{\mathrm{geom}} \left(1 - \frac{E_{\mathrm{Binding}}}{\langle E_{co} \rangle}\right)^{n}$$

$$\sigma_{\mathrm{geom}} \equiv \pi r_{\mathcal{Q}_{b\bar{b}}}^{2}$$

 $E^{co}=\sqrt{p^2+m_{co}^2}$ the average energy of the comovers in the quarkonium rest frame • Geometrical cross section: $\sigma_{\rm geo}^{\cal Q}\simeq\pi r_{\cal Q}^2$, where $r_{\cal Q}$ is the quarkonium Bohr radius

- It can be evaluated by solving the Schrodinger equation with a well-choosen
- potential reproducing the quarkonium spectroscopy

 $E_{\text{Binding}} \equiv 2M_B - M_{Q_{b\bar{b}}}$, i.e. the threshold energy to break the bound state

• Cornell potential: Satz arXiv:0512217 $V(r)=\sigma \ r-\frac{\alpha}{r} \qquad m_c=1.25 \ {\rm GeV}, \ m_b=4.65 \ {\rm GeV}, \ \sqrt{\sigma}=0.445 \ {\rm GeV}, \ \alpha=\pi/12.$

Equivalent
$$a_0 = \frac{2}{MC_F lpha_s(1/a_0)}$$

 $M=M_b=4.78~{\rm GeV}$ and $M=M_c=1.67~{\rm GeV}$

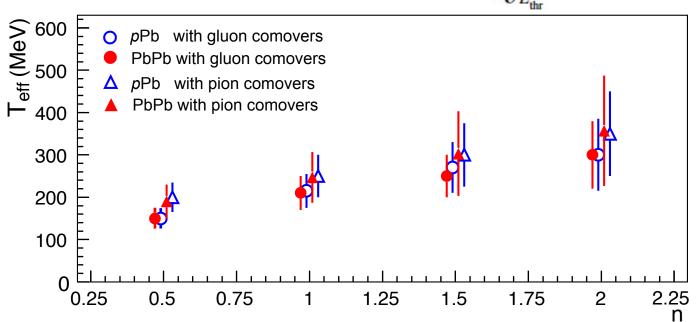
	$E_{ m thr}^{\mathcal{Q}}$	r_Q	$\sigma_{ m geo}^{Q}$	
$\Upsilon(1S)$	$1100~\mathrm{MeV}$	0.14 fm	$0.62 \mathrm{\ mb}$	
$\chi_b(1P)$	670 MeV	0.22 fm	1.52 mb	
$\Upsilon(2S)$	540 MeV	$0.28~\mathrm{fm}$	2.46 mb	
$\chi_b(2P)$	300 MeV	$0.34~\mathrm{fm}$	3.63 mb	
$\Upsilon(3S)$	$200~\mathrm{MeV}$	$0.40~\mathrm{fm}$	5.03 mb	
$\chi_b(3P)$	50 MeV	0.55 fm	10.21 mb	

No. of the last	$E_{ m thr}^{\mathcal{Q}}$	r_Q	$\sigma_{ m geo}^{\mathcal{Q}}$	
J/ψ	$630~\mathrm{MeV}$	$0.25~\mathrm{fm}$	1.96 mb	
$\chi_c(1P)$	$200~\mathrm{MeV}$	$0.36~\mathrm{fm}$	4.07 mb	
$\psi(2\mathrm{S})$	$50~\mathrm{MeV}$	$0.45~\mathrm{fm}$	6.36 mb	

The temperature dependence comes through the comover distributions

$$\mathcal{P}(E^{\text{co}}; T_{\text{eff}}) \propto \frac{1}{e^{E^{\text{co}}/T_{\text{eff}}} - 1}$$

Average over BE distribution of the comovers


$$\langle \sigma^{\text{co-}Q} \rangle (T_{\text{eff}}, n) = \frac{\int_{E_{\text{thr}}^{Q}}^{\infty} dE^{\text{co}} \mathcal{P}(E^{\text{co}}; T_{\text{eff}}) \, \sigma^{\text{co-}Q}(E^{\text{co}})}{\int_{E_{\text{thr}}^{Q}}^{\infty} dE^{\text{co}} \mathcal{P}(E^{\text{co}}; T_{\text{eff}})}$$

E. G. Ferreiro USC Comovers GSI 16/20 Dec 2019

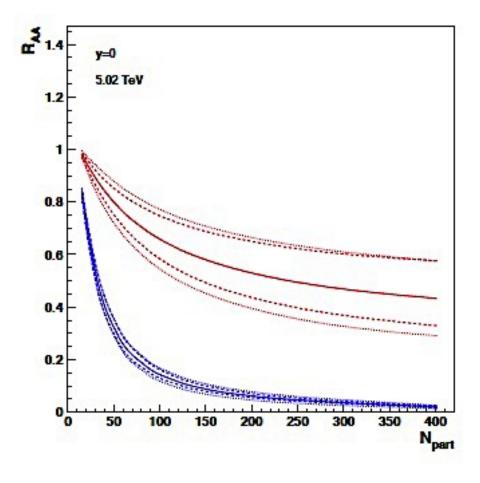
Average over BE distribution of the comovers

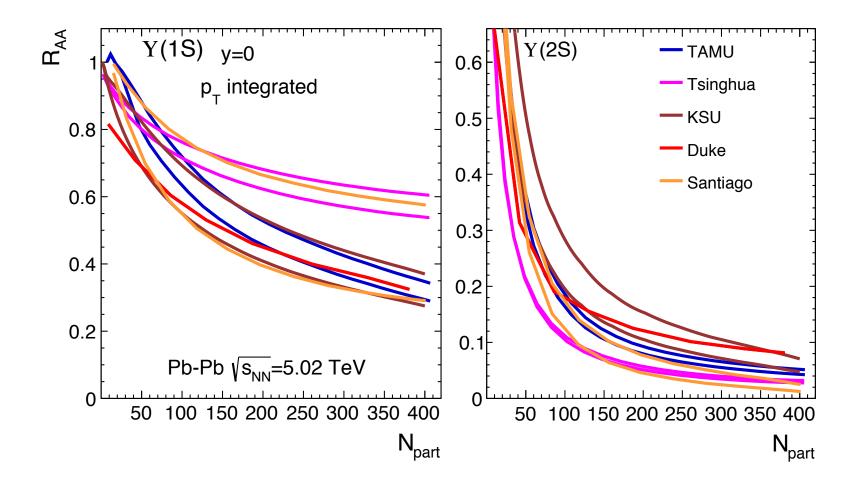
$$\mathcal{P}(E^{\text{co}}; T_{\text{eff}}) \propto 1/(e^{E^{\text{co}}/T_{eff}} - 1)$$

$$\langle \sigma^{\text{co-}Q} \rangle (T_{\text{eff}}, n) = \frac{\displaystyle \int_{E_{\text{thr}}^{\mathcal{Q}}}^{\infty} dE^{\text{co}} \mathcal{P}(E^{\text{co}}; T_{\text{eff}}) \, \sigma^{\text{co-}Q}(E^{\text{co}})}{\displaystyle \int_{E_{\text{thr}}^{\mathcal{Q}}}^{\infty} dE^{\text{co}} \mathcal{P}(E^{\text{co}}; T_{\text{eff}})}$$

- Using pPb CMS and ATLAS data at 5.02 TeV we fit T_{eff} and n. Also with PbPb CMS data
- By varying n between 0.5 and 2, we obtain T_{eff} in the range from 200 to 300 MeV both for **partons** or **hadrons**

• For T=250±50 MeV and n=1:

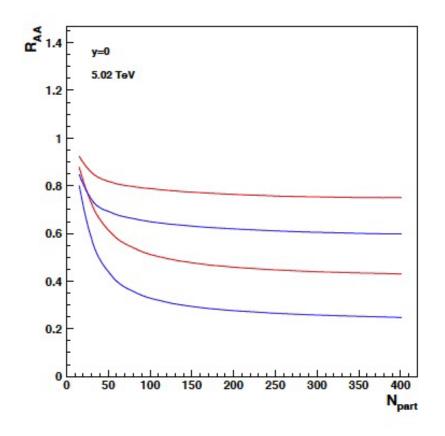

	$E_{ m thr}^{\mathcal{Q}}$	$r_{\mathcal{Q}}$	$\sigma_{ m geo}^{\mathcal{Q}}$	$\sigma_{ m gluon}^{\mathcal{Q}}$	$\sigma_{ m hadron}^{\mathcal{Q}}$
$\Upsilon(1S)$	$1100~{ m MeV}$	0.14 fm	0.62 mb	$0.13^{+0.02}_{-0.02} \text{ mb}$	$0.12^{+0.02}_{-0.02}$ mb
$\chi_b(1P)$	$670~\mathrm{MeV}$	0.22 fm	1.52 mb	$0.48^{+0.07}_{-0.07} \text{ mb}$	$0.43^{+0.06}_{-0.07}$ mb
$\Upsilon(2S)$	$540~\mathrm{MeV}$	0.28 fm	2.46 mb	$0.92^{+0.12}_{-0.14} \text{ mb}$	$0.80^{+0.11}_{-0.12} \text{ mb}$
$\chi_b(2\mathrm{P})$	$300~{ m MeV}$	0.34 fm	3.63 mb	$1.92^{+0.17}_{-0.22} \text{ mb}$	$1.61^{+0.16}_{-0.18}$ mb
$\Upsilon(3S)$	$200~{ m MeV}$	0.40 fm	5.03 mb	$3.18^{+0.22}_{-0.28}$ mb	$2.60^{+0.23}_{-0.28}$ mb
$\chi_b(3P)$	$50~{ m MeV}$	$0.55~\mathrm{fm}$	10.21 mb	$6.90^{+0.14}_{-0.35}$ mb	$5.33^{+0.28}_{-0.37}$ mb

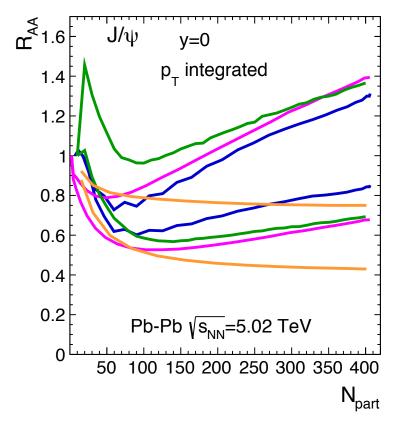

	$E_{ m thr}^{\mathcal{Q}}$	$r_{\mathcal{Q}}$	$\sigma_{ m geo}^{\mathcal{Q}}$	$\sigma_{ m gluon}^{\mathcal{Q}}$	$\sigma_{ m hadron}^{\mathcal{Q}}$
J/ψ				$0.65^{+0.09}_{0.10}~\mathrm{mb}$	
$\chi_c(1P)$	$200~{ m MeV}$	0.36 fm	4.07 mb	$2.75^{+0.17}_{-0.40}$ mb	$2.11^{+0.18}_{-0.23}$ mb
$\psi(2\mathrm{S})$	50 MeV	$0.45~\mathrm{fm}$	6.36 mb	$5.59_{-0.17}^{+0.11}$ mb	$4.31^{+0.23}_{-0.29}$ mb

E. G. Ferreiro USC Comovers GSI 16/20 Dec 2019

Results direct upsilon

- nCTEQ15 shadowing included
- No recombination




Results direct charmonium

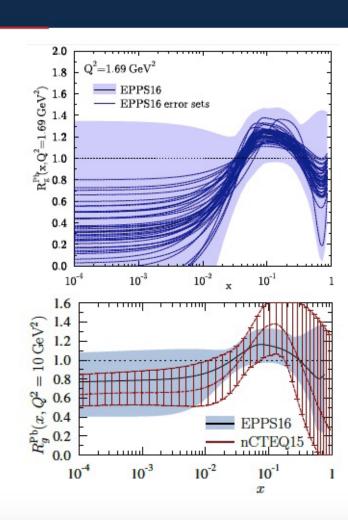
$$\tau \frac{\mathrm{d}N_{J/\psi}}{\mathrm{d}\tau} (b, s, y) = -\sigma_{co} \left[N^{co}(b, s, y) N_{J/\psi}(b, s, y) - N_c(b, s, y) N_{\bar{c}}(b, s, y) \right]$$

- Recombination proportional to
- $\sigma_{nn} d\sigma_{nn}^{J/\psi}/dy$
- $\left(\mathrm{d}\sigma_{pp}^{c\bar{c}}/\mathrm{d}y\right)^{2}$ $\mathrm{d}\sigma_{pp}^{c\bar{c}}/\mathrm{d}y$ = 0.45 to 0.7 mb

nCTEQ15 shadowing included

nCTEQ15 vs EPPS16

	EPS09	DSSZ12	KA15	NCTEQ15	EPPS16
Order in α_s	NLO	NLO	NNLO	NLO	NLO
DIS in ℓ ⁻ +A	✓	✓	✓	✓	√
Drell-Yan in p+A	✓	✓	✓	✓	✓
RHIC pions d+Au	✓	✓	/10	✓	✓
Neutrino-nucleus DIS	5.20	✓			✓
Drell-Yan in π + A					✓
LHC p+Pb dijets					✓
LHC p+Pb W, Z					1
Q cut in DIS	$1.3\mathrm{GeV}$	$1\mathrm{GeV}$	$1\mathrm{GeV}$	$2\mathrm{GeV}$	$1.3\mathrm{GeV}$
datapoints	929	1579	1479	708	1811
free parameters	15	25	16	16	20
error analysis	Hessian	Hessian	Hessian	Hessian	Hessian
error tolerance $\Delta\chi^2$	50	30	N.N	35	52
proton baseline PDFs	CTEQ6.1	MSTW2008	JR09	CTEQ6M-like	CT14NLO
Heavy-quark effects		✓		√	✓
Flavour separation		32.2		partial	full
Reference	JHEP 0904 065	PR D85 074028	PR D93, 014026	PR D93 085037	EPJ C77 163


[Table: H. Paukkunen]

nCTEQ15 vs EPPS16

Gluons

Nuclear modification

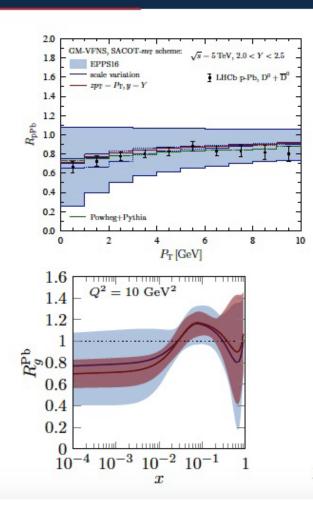
- Data constrain gluons only around x ~ 0.1
 ⇒ Large uncertainties at small-x
- However, scale evolution rapidly shrinks the uncertainties at small-x as these originate from well-constrained quarks at higher x
- Reasonable agreement between the analyses
 - Intermediate x: Smaller uncertainty in EPPS16 due to dijet data
 - Small x: Smaller uncertainty in nCTEQ15 probably due to more restrictive parametrization

Ilkka Helenius

nCTEQ15 vs EPPS16

Heavy-flavour R_{pPb} impact on nPDFs

Strong constraints for gluons


- LHCb data up to Y = 4 [JHEP 1710 (2017) 090]
- Sensitivity down to $x \sim 10^{-5}$
- Impact studied with reweighting method
 - Assuming simplified kinematics

[Kusina et al., PRL 121, 052004]

· With full GM-VFNS NLO calculation

[Paukkunen et al., to appear]

- Good agreement with collinear factorization
- Provides significant reduction of the small-x gluon uncertainty
- Shadowing consistent with the dijet R_{pPb}

Ilkka Helenius

E. G. Ferreiro USC Comovers GSI 16/20 Dec 2019