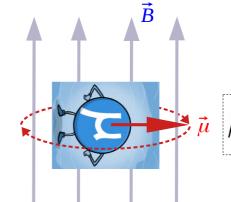







# Status of the Muon g-2 experiment

International Conference on Exotic Atoms and Related Topics


**EXA 2021** 

September 14th 2021

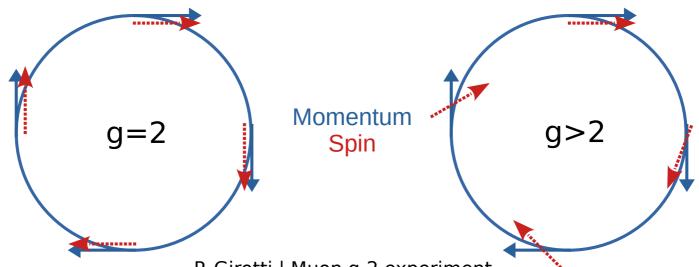
Paolo Girotti - University of Pisa

# The experimental principle





#### Spin precession frequency


$$\vec{\omega}_s = -\frac{ge\vec{B}}{2m} - (1 - \gamma)\frac{e\vec{B}}{m\gamma} \qquad \vec{\omega}_c = -\frac{e\vec{B}}{m\gamma}$$

#### Cyclotron frequency

$$\vec{\omega}_c = -\frac{e\vec{B}}{m\gamma}$$

$$\vec{\omega}_a = \underline{\vec{\omega}_s} - \underline{\vec{\omega}_c} = -\left(\frac{g-2}{2}\right) \frac{e\vec{B}}{m} \equiv -\underline{a_\mu} \frac{e\vec{B}}{m}$$

The muon interactions with the vacuum manifest with a difference between the spin and the momentum frequencies

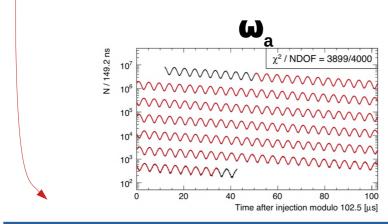


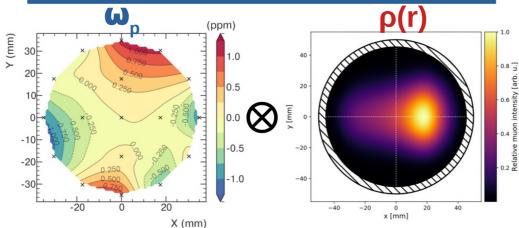


# Added complexity

- Muons are naturally focused horizontally
- Vertical focusing provided by electrostatic quadrupoles
  - Effect on  $\omega_{\rm a}$  minimized by using *magic* momentum of 3.094 GeV/c
- The beam oscillates and breathes both horizontally and vertically
  - Beam dynamics analysis and pitch correction address these effects

$$\vec{\omega}_{a} = -\frac{e}{mc} \left[ a_{\mu} \vec{B} - \left( a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \left( \frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$


$$\gamma \sim 29.3$$




### Final formula

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p'(T_r)} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

Constants known with high precision





- ω<sub>a</sub>: Muon anomalous precession frequency
- ω<sub>p</sub>: Larmor precession frequency of protons in water (mapping B)
- ρ<sub>r</sub>: Muon distribution in the storage ring

Goal: measure  $a_{\mu}$  with 140 ppb accuracy (100 stat + 100 syst)



## How to measure g-2

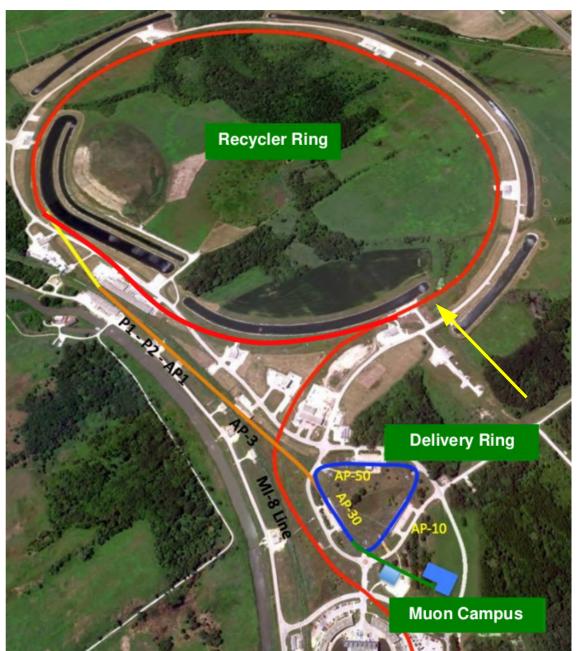
#### Key ingredients:

- A beam of polarized muons
- A magnet to store the beam
- A way to measure the muon spin, the magnetic field and the beam through time



## How to measure g-2

#### Key ingredients:

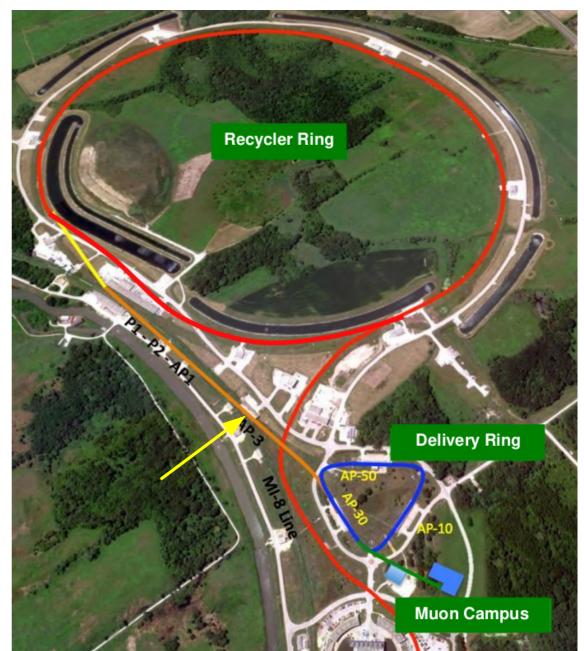

- A beam of polarized muons
- A magnet to store the beam
- A way to measure the muon spin, the magnetic field and the beam through time

## The beam

16 bunches of 10<sup>12</sup>
 protons @8 GeV get
 boosted and handled by
 the recycler ring





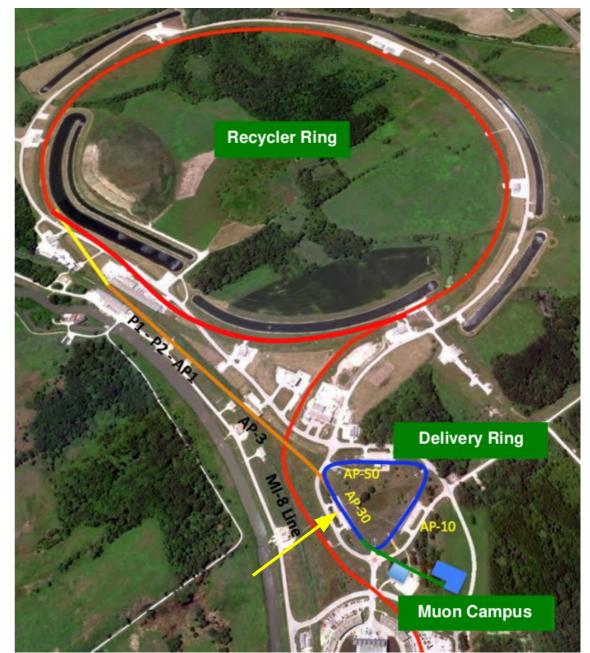





- 16 bunches of 10<sup>12</sup>
   protons @8 GeV get
   boosted and handled by
   the recycler ring
- Each bunch hits a fixed Inconel 600 target

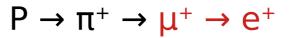




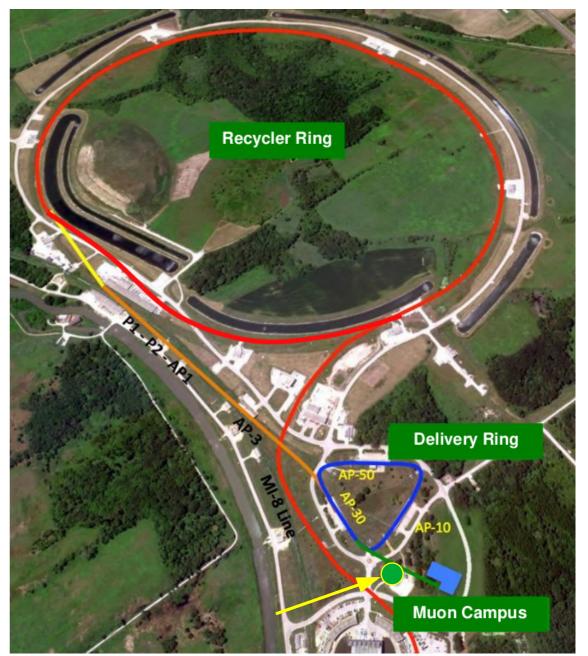





- 16 bunches of 10<sup>12</sup>
   protons @8 GeV get
   boosted and handled by
   the recycler ring
- Each bunch hits a fixed Inconel 600 target
- Pions from shower extracted and decay in delivery ring







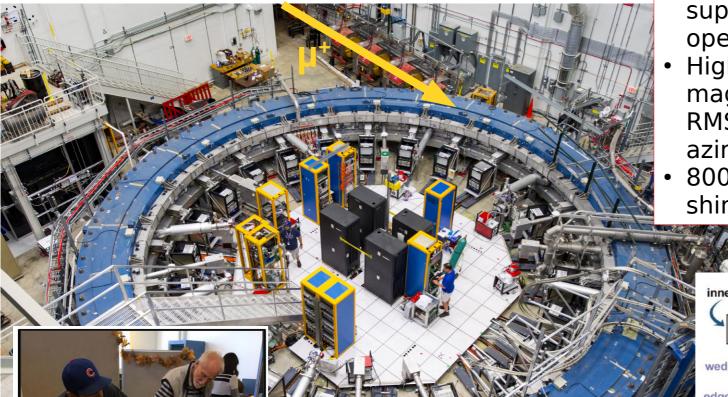

- 16 bunches of 10<sup>12</sup>
   protons @8 GeV get
   boosted and handled by
   the recycler ring
- Each bunch hits a fixed Inconel 600 target
- Pions from shower extracted and decay in delivery ring
- Muons enter g-2 ring



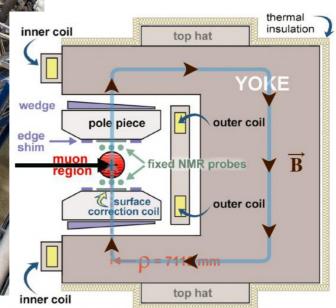






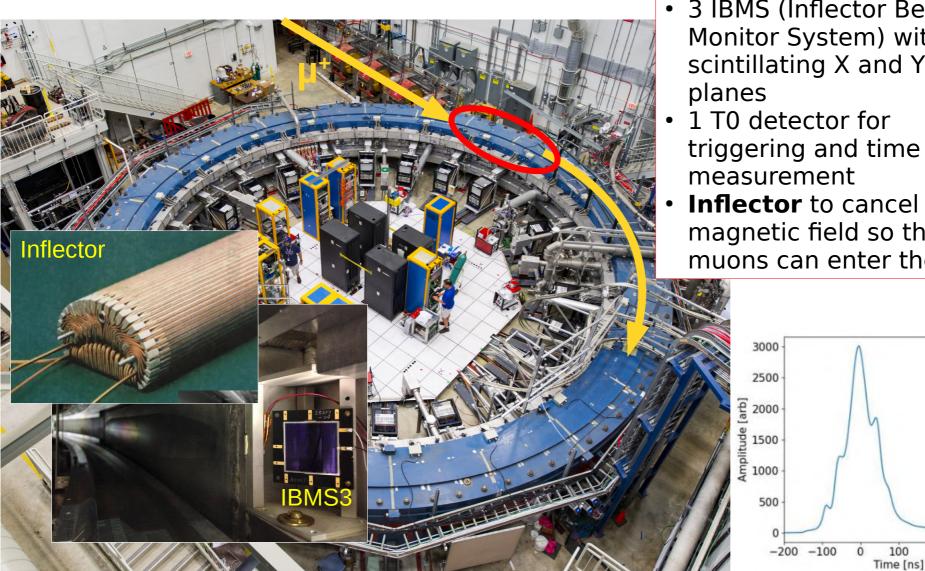

## How to measure g-2

#### Key ingredients:


- A beam of polarized muons
- A magnet to store the beam
- A way to measure the muon spin, the magnetic field and the beam through time



## Magnet




- 7.112 m radius C-shaped superconducting magnet operating at ~5 K
- Highly uniform 1.45 T magnetic field (14 ppm RMS across the full azimuth)
- 8000 iron foils for precise shimming





# **Beam injection**



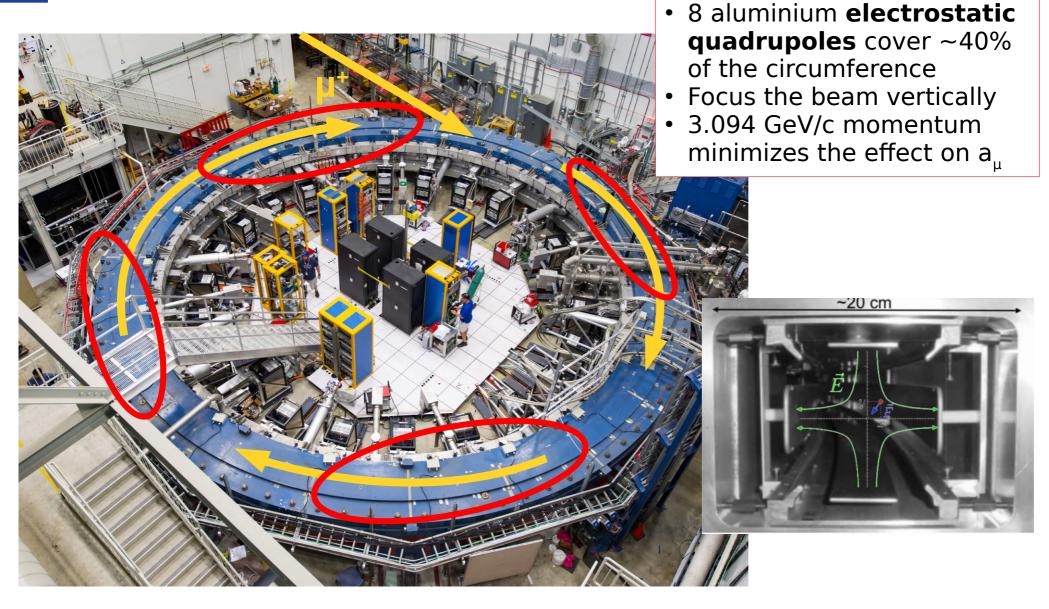
- triggering and time profile
- **Inflector** to cancel the magnetic field so that muons can enter the ring

300



Time (µs)

#### Kicker


09/14/21

• 3 fast magnetic kickers to put muons in the correct orbit • 4 kA current in 200 ns pulse Inflector Injection orbit R= 711.2 cm Kicker Modules d = 9 cmB(t) 10.8 mrad — Kicker Pulse from Magnetometer Data -T0 Pulse ---- Cyclotron Period Intensity (

P. Girotti | Muon g-2 experiment



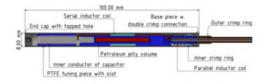
# Quadrupoles





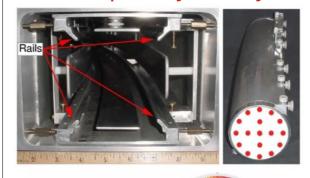
## How to measure g-2

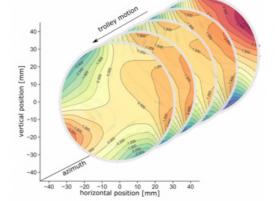
#### Key ingredients:


- A beam of polarized muons
- A magnet to store the beam
- A way to measure the muon spin, the magnetic field and the beam through time



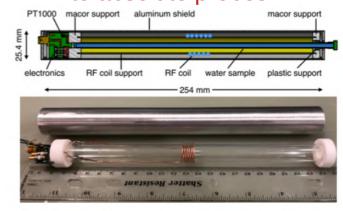
# Measuring the field


- Need to determine B at < 100 ppb to determine a<sub>μ</sub>
  - Use NMR to assess B-field in terms of proton precession frequency  $\omega_{\scriptscriptstyle D}$


## 378 fixed probes continuous monitoring





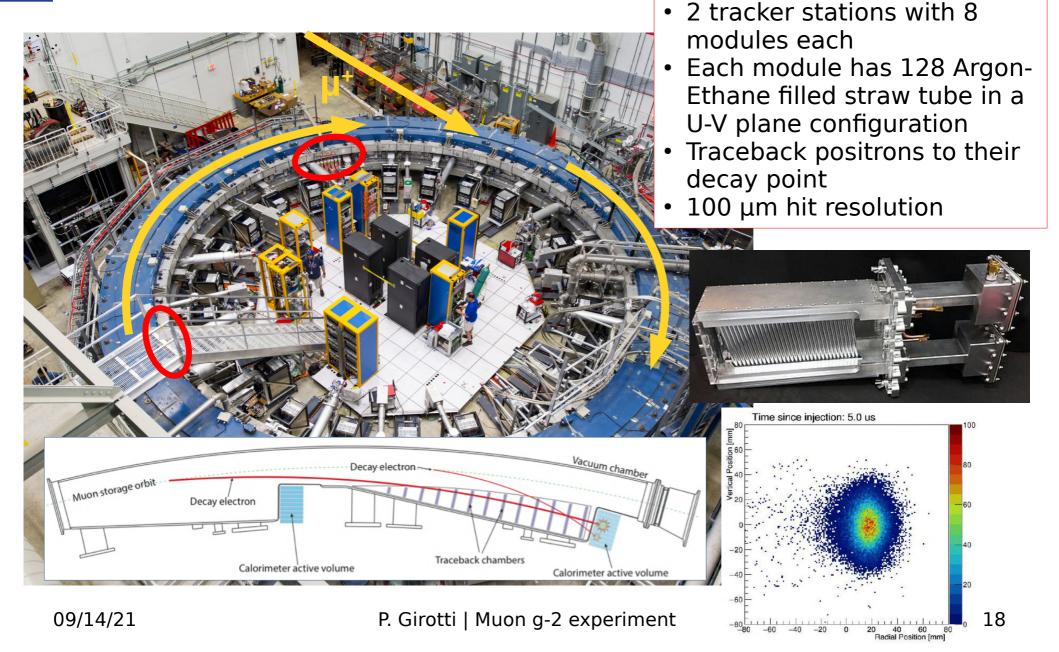

## 17 probes on a trolley to 3D map every ~3 days





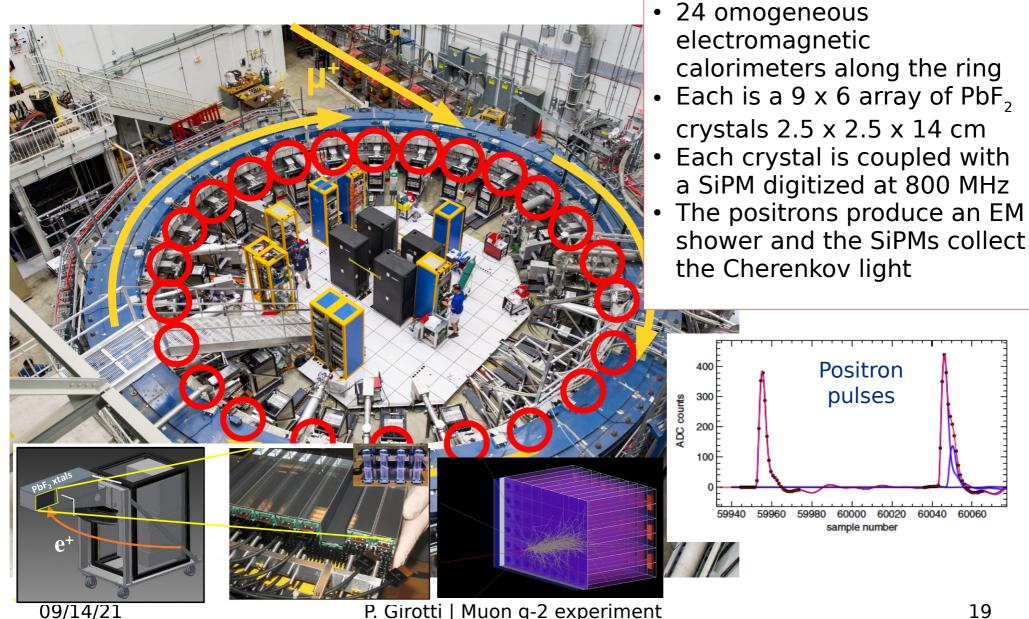
P. Girotti | Muon g-2 experiment

## Trolley cross-calibrated to absolute probes





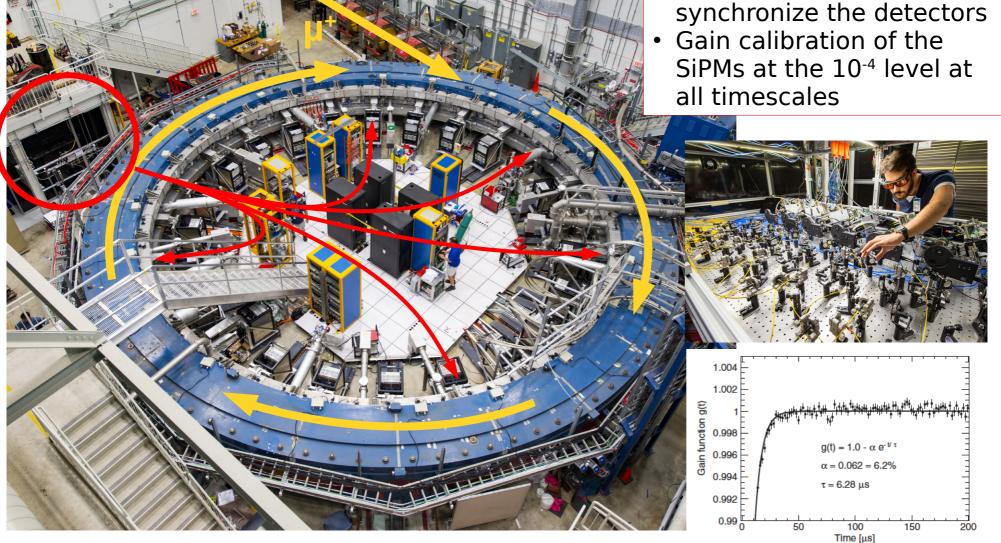



# Measuring the beam






# Measuring the positrons

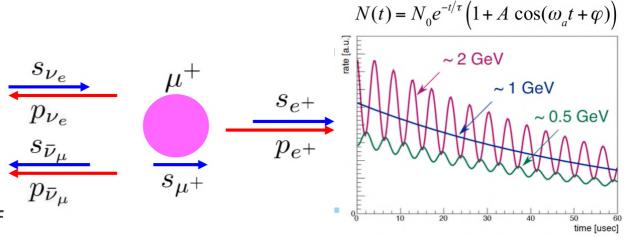


# Laser Calibration System



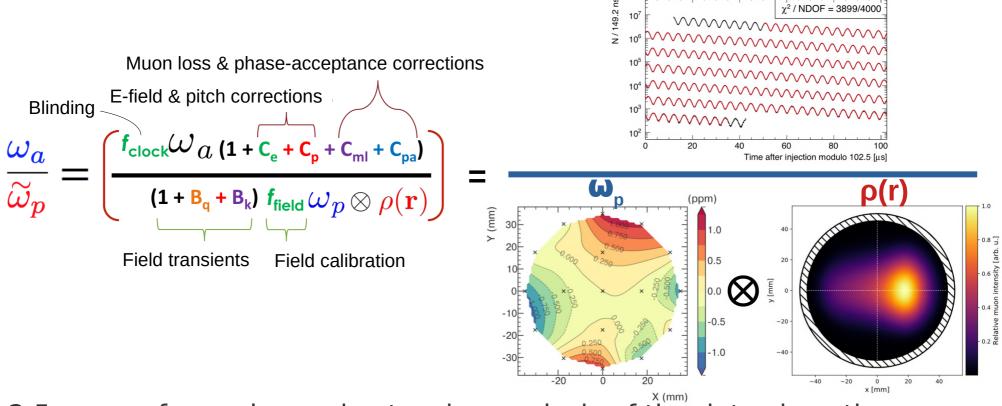
 Very stable laser system to calibrate and synchronize the detectors






# Two gifts from nature

- Pions have no spin and decay in a muon and a neutrino
  - Parity violation dictates that the muon has left elicity
  - Since beam is boosted, higher energy muons are highly polarized (~97%)




- Muon decays in a positron and two neutrinos
- Parity violation dictates that high energy positrons are emitted preferably in the direction of muon spin
- The decay asymmetry is observed as an oscillation of the positron count over time





#### The final formula



- 2.5 years of complex and extensive analysis of the data since the acquisition to the public release
- Two new effects from the field transients and the phase-acceptance discovered and calculated
- Systematics calculated with excruciating detail to the ppb level
   09/14/21
   P. Girotti | Muon g-2 experiment



1a 1b 1c

# 2.5 years of analysis

| run-1 (substructure)           | 77.4 ppb           |
|--------------------------------|--------------------|
| azimuthal shape*               | $7.6\mathrm{ppb}$  |
| skin depth                     | $12.6\mathrm{ppb}$ |
| frequency extraction (0.4/1ms) | $4.6\mathrm{ppb}$  |
| Q3L: fit, position             | $1.5\mathrm{ppb}$  |
| repeatability                  | $13.3\mathrm{ppb}$ |
| drift                          | $10.2\mathrm{ppb}$ |
| radial dependency              | 4.4 ppb            |
| 2 <sup>nd</sup> 8-pulses       | $14.0\mathrm{ppb}$ |
| total -15.0 ppb                | 81.7 ppb           |

| PROBE | Cali       | bration Coeffic | ients     |
|-------|------------|-----------------|-----------|
| PROBE | Value (Hz) | Stat (Hz)       | Syst (Hz) |
| 1     | 90.81      | 0.38            | 2.02      |
| 2     | 84.21      | 0.65            | 1.18      |
| 3     | 95.02      | 0.53            | 2.19      |
| 4     | 86.03      | 0.25            | 1.28      |
| 5     | 92.96      | 0.51            | 1.10      |
| 6     | 106.24     | 0.46            | 1.35      |
| 7     | 116.64     | 0.96            | 1.61      |
| 8     | 76.39      | 0.60            | 1.21      |
| 9     | 83.52      | 0.23            | 1.64      |
| 10    | 24.06      | 1.39            | 1.26      |
| -11   | 177.55     | 0.22            | 1.99      |
| 12    | 110.85     | 0.44            | 1.73      |
| 13    | 122.89     | 2.08            | 1.93      |
| 14    | 77.11      | 0.53            | 1.88      |
| 15    | 74.82      | 1.06            | 1.59      |
| 16    | 20.35      | 0.44            | 2.94      |
| 17    | 172.12     | 1.23            | 1.96      |
| AVG   |            | 0.70            | 1.70      |

| Source                 | Uncertainty |
|------------------------|-------------|
| Frequency Standard     | 1 ppt       |
| Frequency Synthesizers | 0.1 ppb     |
| Digitization Frequency | 2 ppb       |
| Total Systematic       | 2 ppb       |

| F |    |   |
|---|----|---|
| c | oc | k |

| $R(\omega_a)$ with detailed  | systematics | cate | gories | [ppb] |
|------------------------------|-------------|------|--------|-------|
| Total systematic uncertainty | 65.2        | 70.5 | 54.0   | 48.8  |
| Time randomization           | 14.8        | 11.7 | 9.2    | 6.9   |
| Time correction              | 3.9         | 1.2  | 1.1    | 1.0   |
| Gain                         | 12.4        | 9.4  | 8.9    | 4.8   |
| Pileup                       | 39.1        | 41.7 | 35.2   | 30.9  |
| Pileup artificial dead time  | 3.0         | 3.0  | 3.0    | 3.0   |
| Muon loss                    | 2.2         | 1.9  | 5.2    | 2.4   |
| СВО                          | 42.0        | 49.5 | 31.5   | 35.2  |
| Ad-hoc correction            | 21.1        | 21.1 | 22.1   | 10.3  |

| C <sub>p</sub> (ppb)        | 176  | 199  | 191  | 166  |     |
|-----------------------------|------|------|------|------|-----|
| Statistical uncertainty     | <0.1 | <0.1 | <0.1 | <0.1 | -   |
| Tracker alignment/reco.     | 11.0 | 12.3 | 12.0 | 10.7 |     |
| Tracker res. & acc. removal | 3.3  | 3.9  | 3.7  | 3.0  | Ph  |
| Azimuthal avg. & calo. acc. | 1.0  | 1.3  | 2.2  | 1.1  |     |
| Amplitude fit               | 1.2  | 0.4  | 1.0  | 2.9  | Lin |
| Quad alignment/voltage      | 4.4  | 4.4  | 4.4  | 4.4  | C   |
| Systematic uncertainty      | 12.4 | 13.7 | 13.6 | 12.3 |     |
|                             |      |      |      |      |     |

| Total                  | 43 – 62           |
|------------------------|-------------------|
| Tracking Drift         | 22 - 43           |
| Fixed Probe Baseline   | 8                 |
| Fixed Probe Production | <1                |
| Trolley                | 25                |
| Configuration          | 22                |
| Temperature            | 15 – 28           |
| Source                 | Uncertainty (ppb) |

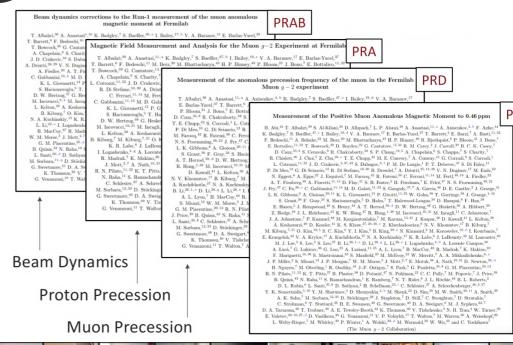
| $R(\omega_a)$ with detailed s | ystematics | cate | egories | [ppb] |
|-------------------------------|------------|------|---------|-------|
| Total systematic uncertainty  | 65.2       | 70.5 | 54.0    | 48.8  |
| Time randomization            | 14.8       | 11.7 | 9.2     | 6.9   |
| Time correction               | 3.9        | 1.2  | 1.1     | 1.0   |
| Gain                          | 12.4       | 9.4  | 8.9     | 4.8   |
| Pileup                        | 39.1       | 41.7 | 35.2    | 30.9  |
| Pileup artificial dead time   | 3.0        | 3.0  | 3.0     | 3.0   |
| Muon loss                     | 2.2        | 1.9  | 5.2     | 2.4   |
| СВО                           | 42.0       | 49.5 | 31.5    | 35.2  |
| Ad-hoc correction             | 21.1       | 21.1 | 22.1    | 10.3  |
| 1.1                           |            |      |         |       |

| Pileup artificial dead time | 3.0  | 3.0  | 3.0  |    |
|-----------------------------|------|------|------|----|
| Muon loss                   | 2.2  | 1.9  | 5.2  | 2  |
| СВО                         | 42.0 | 49.5 | 31.5 | 35 |
| Ad-hoc correction           | 21.1 | 21.1 | 22.1 | 10 |
| l) a                        |      |      |      |    |

| C <sub>e</sub> (ppb)      | 471 | 464  | 534  | 475 |
|---------------------------|-----|------|------|-----|
| Statistical uncertainty   | 0.4 | 0.5  | 0.4  | 0.2 |
| Fourier method            | 8.4 | 13.4 | 14.4 | 3.9 |
| Momentum-time correlation | 52  | 52   | 52   | 52  |
| Quad alignment/voltage    | 6.4 | 6.4  | 6.4  | 6.4 |
| Field index               | 1.7 | 1.5  | 1.7  | 4.0 |
| Systematic uncertainty    | 53  | 54   | 54   | 53  |
| C                         |     |      |      |     |

| Data Set                       | Run-1a | Run-1b | Run-1c | Run-1d |
|--------------------------------|--------|--------|--------|--------|
| $C_{ml}$                       | -14    | -3     | -7     | -17    |
| Phase-momentum                 | 2      | 0      | 1      | 3      |
| Form of $l(t)$                 | 2      | 0      | 1      | 1      |
| $f_{loss}$ function            | 2      | 1      | 2      | 2      |
| Linear sum $(\sigma_{C_{ml}})$ | 6      | 2      | 4      | 6      |

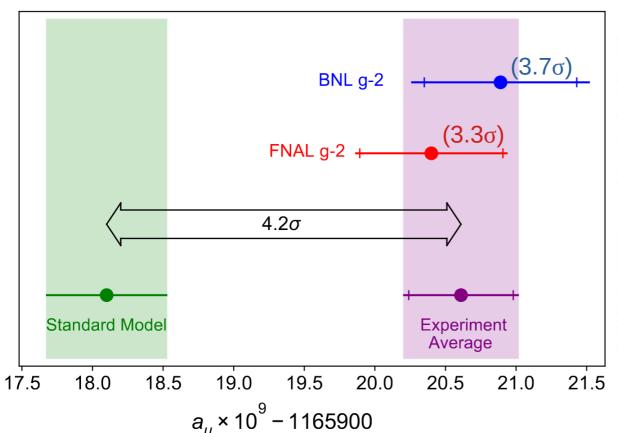
| Data Set          | Run-1a | Run-1b | Run-1c | Run-1 |
|-------------------|--------|--------|--------|-------|
| $C_{\mathrm{pa}}$ | -184   | -165   | -117   | -164  |
| Stat. uncertainty | 23     | 20     | 15     | 14    |
| Tracker & CBO     | 73     | 43     | 41     | 44    |
| Phase maps        | 52     | 49     | 35     | 40    |
| Beam dynamics     | 27     | 30     | 22     | 45    |
| Total uncertainty | 96     | 74     | 60     | 80    |


| Quantity                    | Symbol               | Value         | Unit   |
|-----------------------------|----------------------|---------------|--------|
| Diamagnetic Shielding T dep | (1/σ)dσ/dT           | -10.36(30)    | ppb/°C |
| Bulk Susceptibility         | $\delta_{b}$         | -1504.6 ± 4.9 | ppb    |
| Material Perturbation       | $\delta_s$           | 15.2 ± 13.3   | ppb    |
| Paramagnetic Impurities     | $\delta_p$           | 0 ± 2         | ppb    |
| Radiation Damping           | $\delta_{\text{RD}}$ | 0 ± 3         | ppb    |
| Proton Dipolar Fields       | $\delta_{\text{d}}$  | 0 ± 2.3       | ppb    |

|                             | correction [ppb] |      |      | uncertainty [ppb] |      |      |      |      |
|-----------------------------|------------------|------|------|-------------------|------|------|------|------|
| Dataset                     | 1a               | 1b   | 1c   | 1d                | 1a   | 1b   | 1c   | 1d   |
| 1. Tracker and calo effects | -                | -    | -    | -                 | 9.2  | 13.3 | 15.6 | 19.7 |
| 2. COD effects              | 1.6              | 1.5  | 1.7  | 1.4               | 5.2  | 4.7  | 5.2  | 4.9  |
| 3. In-fill time effects     | -1.9             | -2.3 | -1.2 | -4.1              | -    | -    | -    | -    |
| Total                       | -0.3             | -0.8 | 0.5  | -2.7              | 10.6 | 14.1 | 16.5 | 20.3 |



#### Run 1 release


- Data unblinded on 25 February 2021 on a zoom session with 170+ collaborators
- Publicly released on 7 April 2021
- 4 papers released at the same time (PRL, PRD, PRA, PRAB)

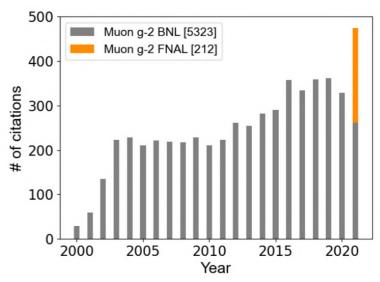


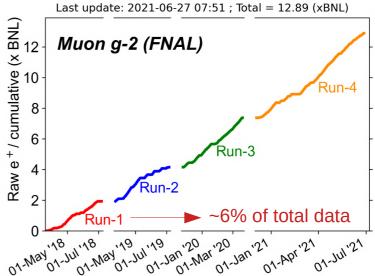




#### Run 1 release

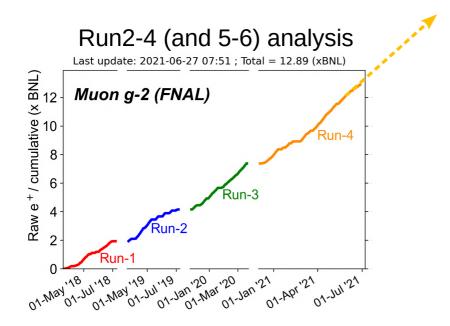



| Quantity                                                             | Correction Terms | Uncertainty |
|----------------------------------------------------------------------|------------------|-------------|
|                                                                      | (ppb)            | (ppb)       |
| $\omega_a^m$ (statistical)                                           | _                | 434         |
| $\omega_a^m$ (systematic)                                            | _                | 56          |
| $C_e$                                                                | 489              | 53          |
| $C_p$                                                                | 180              | 13          |
| $C_{ml}$                                                             | -11              | 5           |
| $C_{pa}$                                                             | -158             | 75          |
| $f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle$ | _                | 56          |
| $B_k$                                                                | -27              | 37          |
| $B_q$                                                                | -17              | 92          |
| $\mu_p'(34.7^{\circ})/\mu_e$                                         | _                | 10          |
| $m_{\mu}/m_e$                                                        | _                | 22          |
| $g_e/2$                                                              | _                | 0           |
| Total systematic                                                     | _                | 157         |
| Total fundamental factors                                            | _                | 25          |
| Totals                                                               | 544              | 462         |

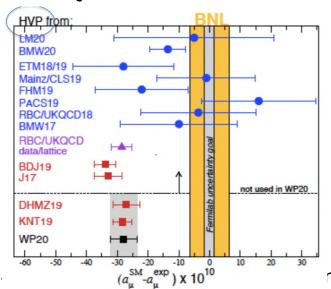

```
a_{\mu} (Th) = 116 591 810(43) × 10<sup>-11</sup> (0.37 ppm) a_{\mu} (FNAL) = 116 592 040(54) × 10<sup>-11</sup> (0.46 ppm) a_{\mu} (Exp) = 116 592 061(41) × 10<sup>-11</sup> (0.35 ppm)
```



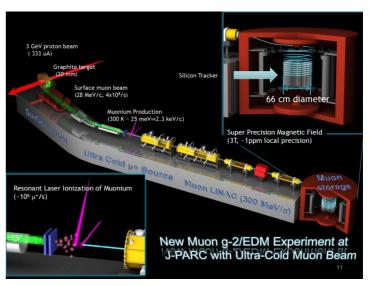
## Summing up...


- Truly interdisciplinary experiment, touching many aspects of particle physics
- The analysis of Run-1 data produced a result with 460 ppb precision
- FNAL confirms BNL
- A lot more data to be analyzed.
   Run 2-3 result coming in 1-2 years,
   with a factor 2 improvement still statistically limited
- Run 4 concluded this June, Run 5 starting soon

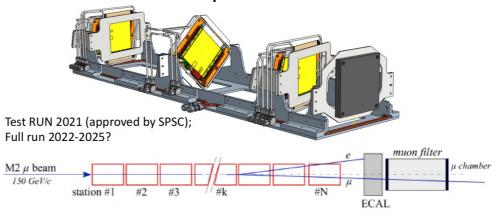








#### What's next




#### New QCD Lattice calculations



#### Muon g-2 experiment at J-PARC



#### MuonE experiment at CERN

