

A New Limit on the Neutron Electric Dipole Moment

Pin-Jung Chiu on behalf of the nEDM collaboration at PSI

EXA online conference 14 September 2021

PHYSICAL REVIEW LETTERS 124, 081803 (2020)

Featured in Physics

Editors' Suga

Measurement of the Permanent Electric Dipole Moment of the Neutron

C. Abel,¹S. Afach,^{2,3}N. J. Ayres,^{1,3}C. A. Baker,⁴G. Ban,⁵G. Bison,²K. Bodek,⁶V. Bondar,^{2,3,7}M. Burghoff,⁸E. Chanel,⁹Z. Chowdhuri,²P.J. Chiu,^{2,3}B. Clement,¹⁰C. B. Crawford⁰,¹¹M. Daum,²S. Emmenegegr,³L. Ferraris-Bouchez,¹⁰M. Fertl⁰,^{2,3,12}P. Flaux,⁵B. Franke,^{2,3,4}A. Fratangelo,⁹P. Geltenbort,¹³K. Green,⁴W. C. Griffith,¹M. van der Grinten,⁴Z. D. Grujić⁰,^{14,15}P. G. Harris,⁰,¹L. Hayen,^{7,e}W. Heil,¹²R. Henneck,²V. Helaine,^{2,5}N. Hild,^{2,3}Z. Hodge,⁹M. Horras,^{3,3}P. Iaydjiev,^{4,n}S. N. Ivanov,^{4,o}M. Kasprzak,^{2,7,14}Y. Kermaidic.^{10,4}K. Kirch,^{2,3}A. Knecht,^{2,3}P. Knowles,¹⁴H.-C. Koch,^{2,14,12}P. A. Koss,^{7,g}S. Komposch,^{2,3}A. Kozela,¹⁶A. Kraft,^{2,12}J. Krempel,³M. Kuźniak,^{2,6,h}B. Lauss,²T. Lefort,⁵Y. Lemière,⁵A. Leredde,¹⁰P. Mohanmurthy,^{2,3}A. Mchedlishvili,²M. Musgrave,^{1,1}O. Naviliat-Cuncic,⁵D. Pais,^{2,3}F. M. Piegsa,⁹E. Piere,^{2,5,j}G. Pignol,^{10,a}C. Plonka-Spehr,¹⁷P. N. Prashanth,⁷G. Quéméner,⁵M. Rawlik,^{3,k}D. Rebreyend,¹⁰I. Rienäcker,^{2,3}D. Ries,^{2,3,17}S. Roccia,^{13,18,b}G. Rogel,⁵¹D. Rozpedzik,⁶A. Schnabel,⁸P. Schmidt-Wellenburg,^{0,2,e}N. Severijns,⁷D. Shiers,¹R. Tavakoli Dinani,⁷J. A. Thorne,¹⁹R. Virot,¹⁰J. Voigt,⁴A. Weis,¹⁴E. Wursten,^{7,m}G. Wyszynski,^{3,6}J. Zejma,⁶J. Zejna,⁶J. Zenner,^{2,17}and G. Zsigmond²

CP violation and electric dipole moment

- Baryon asymmetry of the Universe \rightarrow CP violation
- Electric dipole moment (EDM): $\mathcal{P}, \mathcal{T} \to \mathcal{CP}$

$$\begin{aligned} \mathcal{H} &= -d \cdot E - \mu \cdot B \\ &= -d \frac{\sigma}{|\sigma|} \cdot E - \mu \frac{\sigma}{|\sigma|} \cdot B \end{aligned}$$

For spin-1/2 neutron:
$$\mathcal{H} = -2 \left(d_{\mathrm{n}} \boldsymbol{E} + \mu_{\mathrm{n}} \boldsymbol{B} \right) \cdot \boldsymbol{\sigma}$$

Time reversal: $\mathcal{H}_T = +2 \left(+d_n \boldsymbol{E} - \mu_n \boldsymbol{B} \right) \cdot \boldsymbol{\sigma} \neq \mathcal{H}$

• Energy splits $\mathcal{H} = -2 \left(d_{\mathrm{n}} \boldsymbol{E} + \mu_{\mathrm{n}} \boldsymbol{B} \right) \cdot \boldsymbol{\sigma}$

• Measure the Larmor frequency of the neutron under parallel/antiparallel *E* and *B*

$$hf_{n}^{\uparrow\uparrow} = -2d_{n}E^{\uparrow\uparrow} - 2\mu_{n}B^{\uparrow\uparrow}$$

$$hf_{n}^{\uparrow\downarrow} = +2d_{n}E^{\uparrow\downarrow} - 2\mu_{n}B^{\uparrow\downarrow}$$

$$\Rightarrow d_{n} = \frac{h\left(f_{n}^{\uparrow\uparrow} - f_{n}^{\uparrow\downarrow}\right) - 2\mu_{n}\left(-B^{\uparrow\uparrow} + B^{\uparrow\downarrow}\right)}{-2\left(E^{\uparrow\uparrow} + E^{\uparrow\downarrow}\right)}.$$
Stability and uniformity! \rightarrow Magnetometers

Ultracold neutron (UCN)

Optical potential (Fermi potential) • UCN properties $V_{F} \le 180 - 300 \text{ neV}$ - kinetic energy ≤ 300 neV (e.g., Ni, Be, BeO, DLC) – temperature: 3-5 mK - velocity ≤ 8 m/s - storable Coolant and D₂ supply lines West-2 West-1 UCN storage vessel Shutter flaps heavy water (D₂O) moderator South UCN guide solid D₂ converter proton beam nEDM lead spallation target

PAUL SCHERRER INSTITUT

Ramsey's method of separated oscillatory fields

one measurement "cycle"

Ramsey's pattern

Ramsey central fringe

$$\mathcal{A}_i = \mathcal{A}_{\text{off}} \mp \alpha \cos\left(\frac{\pi\Delta f_i}{\Delta v} + \phi\right)$$

 Δf_i : spin-flip frequency $\Delta v = (2T + 8\tau/\pi)^{-1} = 2.7 \text{ mHz}$

Free parameters to be fitted: \mathcal{A}_{off} : offset α : visibility ϕ : phase Spin-flip pulses were alternated between four frequencies at the "working points"

¹⁹⁹Hg comagnetometer (HgM)

- Use ¹⁹⁹Hg atoms to correct for 1st-order magnetic-field drifts/noise
- $\mathcal{R} = \frac{f_{\rm n}}{f_{\rm Hg}}$

¹³³Cs magnetometers (CsM)

- 16 optically-pumped Cs-vapor magnetometers
- Installed on three layers above and below the precession chamber

6 optically coupled CsM on the HV electrode

Ref.: C. Abel et al., Phys. Rev. A 101, 053419 (2020).

Magnetic-field mapping

- 3-axis fluxgate magnetometer (r, φ, z)
- Measure fields at thousands of points
- Decompose field into a basis consisting of 63 modes
- Corrects for:
 - Transverse-field shift
 - Higher-order fields in d^{false}

Ref.: C. Abel et al., arXiv:2103.09039 [physics.ins-det] (2021).

10	e · cm	
Shift	Error	
	7	
69	10	magnetic field mans
0	5	- magnetic-neid maps
-0.1	0.1	
	4 —	► measurements at PTB Berlin
	2	
	0.1	
	7.5 —	► CsM
	0.4	
	7 —	 not anticipated earlier
69	18	
	Shift 69 0 -0.1 69	

- Total systematic error $0.18 \times 10^{-26} e \cdot cm$
- 5 times improvement from the previous result
- 1/5 of the statistical error

Paul Scherrer Institute Switzerland | Ultra Cold Neutron Group | Pin-Jung Chiu

Blinding and analysis strategy

• Add an E dependent shift to f_n by moving counts between two detectors

Ref.: N. J. Ayres et al., Eur. Phys. J. A 57, 152 (2021).

 $\stackrel{\delta \nu}{\leftarrow}$

14000 12000 10000

8000

N₁ 6000

n2EDM coming soon!

Thank you very much~

- A new double-chamber apparatus
- Sensitivity goal: $d_n \sim 10^{-27} e \cdot cm$

Collaboration meeting, November 2019, Mainz TRIGA Reactor

Paul Scherrer Institute Switzerland | Ultra Cold Neutron Group | Pin-Jung Chiu

• Pure Hg measurement

Ref.: S. Komposch, PhD thesis (2017).

nEDM vs. n2EDM

	nEDM 2016	n2EDM
Chamber	DLC and dPS	DLC and dPS
Diameter D	47 cm	80 cm
N (per cycle)	15,000	121,000
Т	180 s	180 s
Ε	11 kV/cm	15 kV/cm
α	0.75	0.8
$\sigma(f_n)$ per cycle	9.6 μHz	3.2 µHz
$\sigma(d_n)$ per day	$11 \times 10^{-26} e \text{ cm}$	$2.6 \times 10^{-26} e \text{ cm}$
$\sigma(d_n)$ (final)	$9.5 \times 10^{-27} \ e \ {\rm cm}$	$1.1 \times 10^{-27} e \text{ cm}$

Ref.: N. J. Ayres et al., Eur. Phys. J. C 81, 512 (2021).

Systematic effects ---- *B* terms
•
$$\mathcal{R} = \frac{f_n}{f_{Hg}} = \left| \frac{\gamma_n}{\gamma_{Hg}} \right| (1 + \delta_{EDM} + \delta_{EDM}^{false} + \delta_{quad} + \delta_{grav} + \delta_T + \delta_{Earth} + \delta_{light} + \delta_{inc} + \delta_{other})$$

E B secondary effects
Hg
UCN
Gravitational shift
Transverse-field shift
 $\delta_{grav} = \frac{\langle z \rangle}{|B_0|} G_{grav}$
 $\delta_T = \frac{\langle B_T^2 \rangle}{2B_0^2} (B_T^2) = \left((B_x - \langle B_x \rangle)^2 + (B_y - \langle B_y \rangle)^2\right)$
*in the slope of $\partial R / \partial G_{grav}$
 $\rightarrow CsM + offline field maps$
 $\rightarrow offline field maps$*

in a nonuniform **B**

