Spectroscopy of N=21 isotones in the Island of Inversion with AMD - Coexistence of mpmh configurations -

M. Kimura (Hokkaido Univ.)

Its Mechanism

Dominance of the Intruder Configurations and

- Several neutrons are promoted into pf-shell
- Those neutrons bring about strong deformation to the system
- Strong deformation reduces Ex(2+) and enhances

Many Particle-Many Hole States Coexistence of MPMH Configurations and Deformations

Argument:

Island of Inversion is more dynamical region. There is always a competition between mpmh configurations and between spherical and deformed states.

It leads to A)Coexistence of mpmh configurations B)Precursor of the inversion around the island

Theoretical Framework of AMD

A-body Hamiltonian

$$\hat{H} = \sum_{i=1}^{N} \hat{t}_{i} - \hat{t}_{c.m.} + \sum_{i < j} \hat{v}_{ij}^{NN} + \sum_{i < j \in P} \hat{v}_{ij}^{Coulomb}, \quad \hat{v}^{NN} : \text{ Gogny D1S}$$

 $\frac{\text{Parity projected Slater determinant}}{\Psi_{\text{int}}^{\pm}} = \frac{1 \pm \hat{P}_x}{2} \mathcal{A} \{\varphi_1, \varphi_2, ..., \varphi_A\},$

$\begin{array}{rcl} \underline{\text{Single particle wave packets}}\\ \varphi_i &= \phi(\boldsymbol{r})\chi_i\eta_i, \quad \phi(\boldsymbol{r}) &= \exp\{-(\boldsymbol{r}-\boldsymbol{Z}_i)M(\boldsymbol{r}-\boldsymbol{Z}_i)\},\\ \chi_i &= \alpha_i\chi_{\uparrow} + \beta_i\chi_{\downarrow}, \end{array}$

Variational parameters

- \mathbf{Z}_i : centroid of wave packet
- M : deformation of wave packet
- $lpha_i, eta_i$: spin direction

Theoretical Framework of AMD

Angular momentum projection

$$\Psi_{MK}^{J\pm} = \int d\Omega D_{MK}^{J*}(\Omega) \hat{R}(\Omega) \Psi_{\rm int}^{\pm},$$

 $\underline{\mathsf{GCM}} \quad \Psi_{MK}^{J\pm}(\beta_1), \Psi_{MK}^{J\pm}(\beta_2), ..., \Psi_{MK}^{J\pm}(\beta_N)$

Generator Coordinate: quadrupole deformation

$$\boldsymbol{\beta} \ \Psi_{\alpha}^{J\pm} = \sum_{iK} c_{ik} \Psi_{MK}^{J\pm}(\beta_i),$$

Hill-Wheeler eq.

 $\sum_{jK'} H_{iKjK'} c_{jK',\alpha} = E_{\alpha} \sum_{jK'} N_{iKjK'} c_{jK',\alpha},$ $H_{iKjK'} = \langle \Psi_{MK}^{J\pm}(\beta_i) | \hat{H} | \Psi_{MK'}^{J\pm}(\beta_j) \rangle, \quad N_{iKjK'} = \langle \Psi_{MK}^{J\pm}(\beta_i) | \Psi_{MK'}^{J\pm}(\beta_j) \rangle$

Too simple,

but it works, and it makes things interesting

Results: 0+ and 2+ states (Z=10,12 isotopes)

- 2p2h dominates in N=20, 22 system
- 4p4h (4hω)appears only in N=20 isotopes
- Intermediate character of N=18 isotopes
- Precursor in N=18 system

Results: 1⁻ and 3⁻ states (N=20⁻ isotones)

 Great reduction of 3p3h energy

 1p1h is not so sensitive to the proton number

Results: 1⁻ and 3⁻ states (Z=10,12⁻ isotopes)

[MeV]

 Great reduction of 1hω excitation energy

- energy
 Due to the reduction of the reduction of
- Precursor in N=18 system

N=21 sysmtem ({}^{31}Ne) Spin parity of the ground state: J π = 7/2-, 1/2+, 3/2-, 3/2+?

PRL 103, 262501 (2009) Halo Structure of the Island of Inversion Nucleus ³¹Ne

T. Nakamura,¹ N. Kobayashi,¹ Y. Kondo,¹ Y. Satou,¹ N. Aoi,² H. Baba,² S. Deguchi,¹ N. Fukuda,² J. Gibelin,³ N. Inabe,² M. Ishihara,² D. Kameda,² Y. Kawada,¹ T. Kubo,² K. Kusaka,² A. Mengoni,⁴ T. Motobayashi,² T. Ohnishi,² M. Ohtake,² N. A. Orr,³ H. Otsu,² T. Otsuka,⁵ A. Saito,⁵ H. Sakurai,² S. Shimoura,⁵ T. Sumikama,⁶ H. Takeda,² E. Takeshita,² M. Takechi,² S. Takeuchi,² K. Tanaka,² K. N. Tanaka,¹ N. Tanaka,¹ Y. Togano,² Y. Utsuno,⁷ K. Yoneda,² A. Yoshida,² and K. Yoshida²

PHYSICAL REVIEW C 81, 024606 (2010)

Probing the weakly-bound neutron orbit of ³¹Ne with total reaction and one-neutron removal cross sections

W. Horiuchi,^{1,*} Y. Suzuki,^{2,†} P. Capel,^{3,4,‡} and D. Baye^{3,§}

N=21 sysmtem (³³Mg)

Spin parity of the ground state: $J\pi = 3/2$ -, 3/2+?

PRL101,142504(2008). Spin and Magnetic Moment of ³³Mg: Evidence for a Negative-Parity Intruder Ground State

> D. T. Yordanov,¹ M. Kowalska,^{2,3} K. Blaum,² M. De Rydt,¹ K. T. Flanagan,^{1,3} P. Lievens,⁴ R. Neugart,² G. Neyens,¹ and H. H. Stroke⁵

PRL103,262501(2009).

Intruder Configurations in the A = 33 Isobars: ³³Mg and ³³Al

Vandana Tripathi,¹ S. L. Tabor,¹ P. F. Mantica,^{2,3} Y. Utsuno,⁴ P. Bender,¹ J. Cook,² C. R. Hoffman,¹ Sangjin Lee,¹ T. Otsuka,^{5,6} J. Pereira,² M. Perry,¹ K. Pepper,¹ J. S. Pinter,³ J. Stoker,³ A. Volya,¹ and D. Weisshaar²

PLB685, 253 (2010). Structure of ³³Mg sheds new light on the N = 20 island of inversion

R. Kanungo^{a,*}, C. Nociforo^b, A. Prochazka^{b,c}, Y. Utsuno^d, T. Aumann^b, D. Boutin^c, D. Cortina-Gil^e, B. Davids^I, M. Diakaki^g, F. Farinon^{b,c}, H. Geissel^b, R. Gernhäuser^h, J. Gerl^b, R. Janikⁱ, B. Jonson^j, B. Kindler^b, R. Knöbel^{b,c}, R. Krücken^h, M. Lantz^j, H. Lenske^c, Y. Litvinov^{b,k}, K. Mahata^b, P. Maierbeck^h, A. Musumarra^{L,m}, T. Nilsson^j, T. Otsukaⁿ, C. Perro^a, C. Scheidenberger^b, B. Sitarⁱ, P. Strmenⁱ, B. Sun^b, I. Szarkaⁱ, I. Tanihata^o, H. Weick^b, M. Winkler^b

³¹Ne: Levels

• Almost degenerated 3/2+, 3/2- states

331 13/2+ 9/2-5/25 13/2--11/2 +7/2-11/2+-11/2- ____ $\begin{array}{r} 11/2 - - \\ 3/2 - - \\ 7/2 - - \\ 1p0h 11/2 - \end{array}$ Excitation energy [MeV] 3p2h 9/2+ 9/2+-7/2+ 7/2+ —____ 5/2+ —___ 5/2+-9/2--2 3/2+-3/2+-----1/2+------4p3h 2p1h 7/2--5/2-— $3/2 - \frac{3}{3p2h}$ 0

• 3/2- is the ground state, consistent with oneneutron removal experiment • A simple rule Rule #1: <u>Up to 4p and up to 4h configurations</u> <u>appear in</u>

Summar

small excitation energy.

Rule #2: <u>As the number of particles (neutrons in pf</u> <u>shell)</u>

increases, deformation becomes large.

- Coexistence and competition between mpmh states
 - Behavior of 0,2+ and 1-,2- states as function of proton and neutron numbers
 - Precursor of the inversion in N=18 system
- Ground states of N=21 system
 - Competition between mpmh states, normal config is