Spectroscopy of $\mathbf{N}=21$ isotones in the Island of Inversion with AMD
 - Coexistence of mpmh configurations -

M. Kimura (Hokkaido Univ.)

The Island in the Nuclear Chart

 Neutron-rich $\mathrm{F}, \mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$ isotopes (Z=9-12, $\mathrm{N}=18-22$)

Its Discovery

Experiment

Anomalous masses and spin

Visualize the Island

Small Ex(2+) and Large B(E2)

Its Mechanism

Dominance of the Intruder Configurations and

Deformation

${ }^{19} \mathrm{Mg}$	${ }^{30} \mathrm{Mg}$	${ }^{31} \mathrm{Mg}$	${ }^{32} \mathrm{Mg}$	${ }^{33} \mathrm{Mg}$	${ }^{34} \mathrm{Mg}$
${ }^{28} \mathrm{Na}$	${ }^{29} \mathrm{Na}$	${ }^{30} \mathrm{Na}$	${ }^{31} \mathrm{Na}$	${ }^{32} \mathrm{Na}$	${ }^{33} \mathrm{Na}$
${ }^{27} \mathrm{Ne}$	${ }^{28} \mathrm{Ne}$	${ }^{29} \mathrm{Ne}$	${ }^{30} \mathrm{Ne}$	${ }^{31} \mathrm{Ne}$	${ }^{32} \mathrm{Ne}$
${ }^{26} \mathrm{~F}$	${ }^{27} \mathrm{~F}$		${ }^{29} \mathrm{~F}$		${ }^{31} \mathrm{~F}$

- Several neutrons are promoted into pf-shell
- Those neutrons bring about strong deformation to the system
- Strong deformation reduces Ex(2+) and enhances

Many Particle-Many Hole States

Coexistence of MPMH Configurations and

Deformations

Argument:
Island of Inversion is more dynamical region.
There is always a competition between mpmh configurations and between spherical and deformed states.

It leads to
A)Coexistence of mpmh configurations
B)Precursor of the inversion around the island

Theoretical Framework of AMD

A-body Hamiltonian

$$
\hat{H}=\sum_{i=1}^{A} \hat{t}_{i}-\hat{t}_{c . m .}+\sum_{i<j} \hat{v}_{i j}^{N N}+\sum_{i<j \in P} \hat{v}_{i j}^{\text {Coulomb }}, \hat{v}^{N N}: \text { Gogny D1S }
$$

Parity projected Slater determinant

$$
\Psi_{\mathrm{int}}^{ \pm}=\frac{1 \pm \hat{P}_{x}}{2} \mathcal{A}\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{A}\right\}
$$

Single particle wave packets

$$
\begin{aligned}
\varphi_{i}=\phi(\boldsymbol{r}) \chi_{i} \eta_{i}, \quad \phi(\boldsymbol{r}) & =\exp \left\{-\left(\boldsymbol{r}-\boldsymbol{Z}_{i}\right) M\left(\boldsymbol{r}-\boldsymbol{Z}_{i}\right)\right\} \\
\chi_{i} & =\alpha_{i} \chi_{\uparrow}+\beta_{i} \chi_{\downarrow},
\end{aligned}
$$

Variational parameters

\boldsymbol{Z}_{i} : centroid of wave packet
M : deformation of wave packet
$\alpha_{i}, \beta_{i}: \operatorname{spin}$ direction

Theoretical Framework of AMD

Energy variation (frictional cooling)

$$
\left.\frac{d}{d \tau} X_{i}=-\mu \frac{\partial}{\partial X_{i}^{*}} \quad\left(X_{i}=\boldsymbol{Z}_{i}, M, \alpha_{i}, \beta_{i}\right), \quad E=\frac{\left\langle\Psi_{\text {in }}^{ \pm}\right| \hat{H}\left|\Psi_{\text {nn }}^{ \pm}\right\rangle}{\left\langle\Psi_{\text {int }}^{ \pm}\right| \Psi_{\text {int }}^{ \pm} t}\right\rangle .
$$

Rough sketch of wave function and variation

Theoretical Framework of AMD

Angular momentum projection

$$
\Psi_{M K}^{J \pm}=\int d \Omega D_{M K}^{J *}(\Omega) \hat{R}(\Omega) \Psi_{\mathrm{int}}^{ \pm},
$$

$\underline{\mathrm{GCM}} \Psi_{M K}^{J \pm}\left(\beta_{1}\right), \Psi_{M K}^{J \pm}\left(\beta_{2}\right), \ldots, \Psi_{M K}^{J \pm}\left(\beta_{N}\right)$
Generator Coordinate: quadrupole deformation $\beta_{\Psi_{\alpha}^{J \pm}}=\sum_{i K} c_{i k} \Psi_{M K}^{J \pm}\left(\beta_{i}\right)$,

Hill-Wheeler eq.

$$
\begin{aligned}
& \sum_{j K^{\prime}} H_{i K j K^{\prime}} c_{j K^{\prime}, \alpha}=E_{\alpha} \sum_{j K^{\prime}} N_{i K j K^{\prime}} c_{j K^{\prime}, \alpha}, \\
& H_{i K j K^{\prime}}=\left\langle\Psi_{M K}^{J \pm}\left(\beta_{i}\right)\right| \hat{H}\left|\Psi_{M K^{\prime}}^{J \pm}\left(\beta_{j}\right)\right\rangle, \quad N_{i K j K^{\prime}}=\left\langle\Psi_{M K}^{J \pm}\left(\beta_{i}\right) \mid \Psi_{M K^{\prime}}^{J \pm}\left(\beta_{j}\right)\right\rangle
\end{aligned}
$$

Actual Calculation $\left.{ }^{(32} \mathrm{Mg}\right)$

$$
\begin{array}{|ll|lllllll|}
\hline
\end{array}
$$

Consideration on the curves

OpOMp(Al甲(manuraranfig.)

- 2 orbits of sd and 2 of pf shell participate in this game
- From this one can deduce a noivn wiln farmb

Rule for ph configurations

Rule \#1: Up to 4 p and up to 4 h configurations appear in

Expample:

Note that this rule also explains magic number $\mathrm{N}=16$
Rule \#2: As the number of particles (neutrons in pf

Too simple,

but it works, and it makes things interesting

Kesults: 0^{+}and 2^{+}States ($N=20$ isutúnes)

- Strongly deformed 2p2h takes over the ground state
- 4p4h (more deformed) also participates in.
- Some experimental evidence

Kesults: 0^{+}and 2^{+}states ($Z=10,12$ isotopes)

- 2p2h dominates in $\mathrm{N}=20,22$ system
- 4p4h (4h ω)appears only in $\mathrm{N}=20$ isotopes
- Intermediate character of $\mathrm{N}=18$ isotopes
- Precursor in $\mathrm{N}=18$ system

V. Tripathi, et. al., PRC7̄

Results: 1^{-}and 3^{-}states ($\mathrm{N}=20$ 1sotones)

- Great reduction of 3p3h energy
- 1p1h is not so sensitive to the proton number

kesults: 1^{-}and 3° states $(Z=10,12$ isotopes $)$

$\mathrm{N}=21$ sysmtem (${ }^{31} \mathrm{Ne}$)

Spin parity of the ground state: $J \pi=7 / 2-, 1 / 2+, 3 / 2-, 3 / 2+$?

PRL 103, 262501 (2009)
Halo Structure of the Island of Inversion Nucleus ${ }^{31} \mathrm{Ne}$
T. Nakamura, ${ }^{1}$ N. Kobayashi, ${ }^{1}$ Y. Kondo, ${ }^{1}$ Y. Satou, ${ }^{1}$ N. Aoi, ${ }^{2}$ H. Baba, ${ }^{2}$ S. Deguchi, ${ }^{1}$ N. Fukuda, ${ }^{2}$ J. Gibelin, ${ }^{3}$ N. Inabe, ${ }^{2}$ M. Ishihara, ${ }^{2}$ D. Kameda, ${ }^{2}$ Y. Kawada, ${ }^{1}$ T. Kubo, ${ }^{2}$ K. Kusaka, ${ }^{2}$ A. Mengoni, ${ }^{4}$ T. Motobayashi, ${ }^{2}$ T. Ohnishi, ${ }^{2}$ M. Ohtake, ${ }^{2}$ N. A. Orr, ${ }^{3}$ H. Otsu, ${ }^{2}$ T. Otsuka, ${ }^{5}$ A. Saito, ${ }^{5}$ H. Sakurai, ${ }^{2}$ S. Shimoura, ${ }^{5}$ T. Sumikama, ${ }^{6}$ H. Takeda, ${ }^{2}$ E. Takeshita, ${ }^{2}$ M. Takechi, ${ }^{2}$ S. Takeuchi, ${ }^{2}$ K. Tanaka, ${ }^{2}$ K. N. Tanaka, ${ }^{1}$ N. Tanaka, ${ }^{1}$ Y. Togano, ${ }^{2}$ Y. Utsuno, ${ }^{7}$ K. Yoneda, ${ }^{2}$
A. Yoshida, ${ }^{2}$ and K. Yoshida ${ }^{2}$

PHYSICAL REVIEW C 81, 024606 (2010)
Probing the weakly-bound neutron orbit of ${ }^{31} \mathrm{Ne}$ with total reaction and one-neutron removal cross sections

$$
\text { W. Horiuchi, }{ }^{1,{ }^{*}} \text { Y. Suzuki, }{ }^{2, t} \text { P. Capel, }{ }^{3,4, \pm} \text { and D. Baye }{ }^{3,5}
$$

N=21 sysmtem (${ }^{33} \mathrm{Mg}$)
 Spin parity of the ground state: $J \pi=3 / 2-, 3 / 2+$?

PRL101,142504(2008).
Spin and Magnetic Moment of ${ }^{33} \mathrm{Mg}$: Evidence for a Negative-Parity Intruder Ground State
D. T. Yordanov, ${ }^{1}$ M. Kowalska,,${ }^{2.3}$ K. Blaum,,${ }^{2}$ M. De Rydt, ${ }^{1}$ K. T. Flanagan,,${ }^{1,3}$ P. Lievens, ${ }^{4}$
R. Neugart, ${ }^{2}$ G. Neyens, ${ }^{1}$ and H. H. Stroke ${ }^{5}$

PRL103,262501(2009).
Intruder Configurations in the $\boldsymbol{A}=\mathbf{3 3}$ Isobars: ${ }^{33} \mathrm{Mg}$ and ${ }^{33} \mathrm{AI}$
Vandana Tripathi, ${ }^{1}$ S. L. Tabor, ${ }^{1}$ P.F. Mantica, ${ }^{2.3}$ Y. Utsuno, ${ }^{4}$ P. Bender, ${ }^{1}$ J. Cook, ${ }^{2}$ C. R. Hoffman, ${ }^{1}$ Sangjin Lee, ${ }^{1}$ T. Otsuka, ${ }^{5,6}$ J. Pereira, ${ }^{2}$ M. Perry, ${ }^{1}$ K. Pepper, ${ }^{1}$ J.S. Pinter, ${ }^{3}$ J. Stoker, ${ }^{3}$ A. Volya, ${ }^{1}$ and D. Weisshaar ${ }^{2}$

PLB685, 253 (2010).
Structure of ${ }^{33} \mathrm{Mg}$ sheds new light on the $N=20$ island of inversion
R. Kanungo ${ }^{\text {a,* }}$, C. Nociforo ${ }^{\text {b }}$. A. Prochazka ${ }^{\text {b.c. }, ~ Y . ~ U t s u n o ~}{ }^{\text {d }}$, T. Aumann ${ }^{\text {b }}$. D. Boutin ${ }^{\text {c }}$, D. Cortina-Gil ${ }^{\text {e }}$,
B. Davids ${ }^{\text {i }}$, M. Diakaki ${ }^{\text {g , , F. Farinon }}{ }^{\text {b.c. }}$ H. Geissel ${ }^{\text {b }}$, R. Gernhäuser ${ }^{\text {h }}$. J. Gerr ${ }^{\text {b }}$, R. Janik ${ }^{\text {i }}$, B. Jonson ${ }^{j}$,
B. Kindler ${ }^{\text {b }}$, R. Knöbel ${ }^{\text {b,c, }}$, R. Krücken ${ }^{\text {h }}$, M. Lantz ${ }^{\text {j }}$, H. Lenske ${ }^{\text {c }}$, Y. Litvinov ${ }^{\text {b,k }}$, K. Mahat ${ }^{\text {b }}$, P. Maierbeck ${ }^{\text {h }}$. A. Musumarra ${ }^{\text {L.m, }}$, T. Nilsson ${ }^{\mathrm{j}}$, T. Otsuka ${ }^{\mathrm{n}}$, C. Perro ${ }^{\text {a }}$, C. Scheidenberger ${ }^{\text {b }}$, B. Sitar ${ }^{\mathrm{i}}$, P. Strmen ${ }^{\mathrm{i}}$, B. Sun ${ }^{\text {b }}$, I. Szarka ${ }^{i}$, I. Tanihata ${ }^{\circ}$, H. Weick ${ }^{\text {b }}$, M. Winkler ${ }^{\text {b }}$

${ }^{31}$ Ne: Energy curves

- Competition between 2p1h (3/2+) and 3p2h (3/2-) config.
- No chance for 1p0h (7/2-, normal config)

${ }^{31} \mathrm{Ne}$: Levels

- Almost degenerated $3 / 2+, 3 / 2$ - states

${ }^{33} \mathrm{Mg}$

- $3 / 2$ - is the ground state, consistent with oneneutron removal experiment
- A simple rule Rule \#1: Up to 4p and up to 4h configurations appear in
small excitation energy.
Rule \#2: As the number of particles (neutrons in pf shell)
increases, deformation becomes large.
- Coexistence and competition between mpmh states
- Behavior of 0,2+ and 1-,2- states as function of proton and neutron numbers
- Precursor of the inversion in N=18 system
- Ground states of $\mathrm{N}=21$ system
- Competition between mpmh states, normal config is avinurenal

