α-resonance-scattering measurements at CRIB

- ✓ Introduction of CRIB facility
- Method...Thick target method in inverse kinematics
- \checkmark Experiments...⁷Li+ α / ⁷Be+ α

✓ Summary

H. Yamaguchi (

CRIB members:

T. Hashimoto, S. Hayakawa, D.N. Binh, D. Kahl, and S. Kubono

Center for Nuclear Study, Univ. of Tokyo

CRIB Introduction

- CNS Radio-Isotope Beam separator, operated by CNS (Univ. of Tokyo), located at RIBF (RIKEN Nishina Center).
 - ✓ Low-energy(<10MeV/u) RI beams by in-flight method.
 - ✓ Primary beam from K=70 AVF cyclotron.
 - ✓ Momentum (Magnetic rigidity) separation by "double achromatic" system, and velocity separation by a Wien filter.
 - ✓ Orbit radius: 90 cm, solid angle: 5.6 msr, momentum resolution: 1/850.

Intense secondary beam production using cryogenic gas target

2010 Jun 16-18

 H_2 gas target of 760 Torr and 80 mm-long worked at 85K stably for a ⁷Li²⁺ beam of 1.3 pµA. (which deposits heat of 7.4W).

 Secondary beam: ⁷Be⁴⁺ at 4.0 MeV/u, purity 75% (without degrader/ WF).

> 2x10⁸ pps was achieved. *H. Yamaguchi et al., NIMA (2008)*

Price of ³He gas is quickly rising in these 2 years....a recycling system for ³He gas was built.

EENEN10

International collaborations at CRIB

• CRIB experiments performed in 2007-2009, by collaborated members of CNS and other institutes:

The "thick-target" method

- Inverse kinematics with a thick target:
 - Inverse kinematics... measurement is possible for short-lived RI which cannot be used as the target.
 - ✓ Simultaneous measurement of the excitation function for certain energy range.(Small systematic error.)
 - The beam can be stopped in the target...measurement at θ_{cm}=180° (where the potential scattering is minimal) is possible.

Resonance scattering

Proton elastic resonance scattering with the thick target method

Study the resonance states formed by a nucleus and a proton.

Related to hydrogen burning... (p, γ) reaction

Recent results at CRIB :

- ¹³N+p; T. Teranishi et al., Phys. Lett. B (2007).
- ⁷Be+p; H. Yamaguchi et al., Phys. Lett. B (2009).
- ²¹Na+p, ²²Mg+p; J.J. He et al, Phys. Rev. C (2007) and Phys. Rev. C (2009).
- ²⁵Al+p; with McMaster Univ. group (A. Chen et al.)
- ⁸B+p; with Kyushu Univ. (T. Teranishi).
- ²⁶Si+p; with Chung-Ang Univ. (J.Y. Moon et al.).

Study on alpha-induced reactions with thick helium target

Heavy-ion(RI) beam + helium target

- > Alpha particle channel... Alpha elastic resonance scattering...related to (α, γ) reactions.
- > Proton channel....Direct measurement of (α, p) reactions.

Interests at CRIB:

- ${}^{16}O+\alpha$; tested in 2005.
- ⁷Li+ α ; measured in 2009 (mirror of ⁷Be+ α .)
- ⁷Be+ α ; measured in Apr, 2010.
- ¹⁴O+α; Notani et al. (2004), measured in 2008 with K. Hahn's group (Ewha Womans Univ.). Break-out from CNO.
- ²¹Na+α; measured in 2008. ²²Ne enrichment, galactic γ-ray (Dam N. Binh)
- ${}^{11}C+\alpha$; measured in 2009, break out from hot-pp (S. Hayakawa)
- ${}^{30}S+\alpha$; will be measured, XRB (D. Kahl).

⁷Li+α experiment; Purpose

Stable-stable nuclei elastic scattering, however,

•Feasibility test of the ⁷Be+ α experiment.

New measurement of the excitation functions of ⁷Li+α elastic/inelastic scatterings for Ex=10-13 MeV at 180 deg in the c.m. angle, using thick-target method in inverse kinematics.
More precise determination of the resonant widths than the previous data [Cusson, Nucl. Phys (1966)].

•Alpha-cluster structure of ¹¹B (α + α +t).

Exotic cluster structure

- 2α+t/2α+³He cluster state in ¹¹B/¹¹C, similar to the dilute cluster structure in ¹²C: Y.K. En'yo (2007), T. Kawabata et al. (2007).
- A rotational band is expected in higher excited energy region.
- Near the 2α+³He(*t*) threshold... developed cluster-condensed state with J^π=1/2⁺ is expected (T. Yamada *et al.*), but not found yet.
- α width
 spectroscopic factor
 of α-cluster configuration
 evidence of cluster structure

FFNFN10

Astrophysical interests

- Related to $^{7}\text{Li}(\alpha,\gamma)$, directly measured only at resonances:
 - Paul et al., PR 164 (1967) 1332.
 - Hardie et al., PRC, 29 (1984)1199.
- T<< 1 GK; ⁷Li(p,α)⁴He (p-p chain).⁷Be(α,γ)¹¹C(β⁺v)¹¹B is more important.
- High temperature: triple- α should be fast, but ⁷Li(α,γ) may play important roles in some environments: PRL **96**, 091101 (2006)

PHISICAL KE

✓ ¹¹B/⁷Li ratio in supernovae...the v-process

¹¹B is produced mainly through the ${}^{7}Li(\alpha,\gamma){}^{11}B$ reaction.

The ratio of ¹¹B/⁷Li can be sensitive to the neutrino mixing parameter, θ_{13} .

(T. Yoshida et al., PRL2006.)

 ✓ Boron production in inhomogeneous big-bang nucleosynthesis.

FIG. 3. The number ratio of ${}^{7}\text{Li}/{}^{11}\text{B}$ with the relation of $\sin^{2}2\theta_{13}$. The shaded ranges include the uncertainties of neutrino energy spectra deduced from the calculations using three sets of neutrino temperatures and total neutrino energies (see text).

⁷Li+ α elastic scattering exc. function

•Cusson et al,. 1966

ELASTIC DIFFERENTIAL C.M. CROSS SECTION

SOLID LINE IS COMPUTATION, POINTS WERE MEASURED

 Observation consistent with past measurements (Cusson et al., elastic scat. at θ_{CM}=159^oand Soic et al, break up).

⁷Be+ α study

- ⁷Be(α,γ)¹¹C ...reaction in the hot *p-p* chain
 Important at high temperature (Wiesher *et al.*,1986)
- Supermassive objects, pop-III stars (Fuller *et al.*, Mitalas), Novae (Hernanz *et al.*), Big bang nucleosynthesis (Andouze and Reeves),...
- Reaction rate ... resonances of ¹¹C must be studied.

7Be+α

• Measurement performed in April, 2010.

 Several peaks were observed in the excitation function ...alpha resonances

2010 Jun 16-18 **EENEN10**

Summary

- CRIB is a facility which provides low-energy RI beams with good intensity and purity.
- Developments: cryogenic gas target for intense RI beam, active target etc.
- Experiments mainly on astrophysical interests are performed at CRIB, forming international collaborations. Some of the recent experimental results are presented:
 - ✓ $^{7}Li+\alpha(^{11}B \text{ structure}, Boron production in high-T environment}); resonances were observed, consistent with previous results.$
 - ✓ ⁷Be+ α (¹¹C structure, hot p-p chain); measured in April.

Why low-energy RI beam?

- Astrophysical reactions in stars:
 - T ~ 10⁶-10⁹ K (typically keV to several MeV).
 - Low energy beam is suitable.

•Nucleosynthesis proceeds through unstable nuclei in some processes(pp chain, CNO cycle, r-, rp-, processes etc.)

Low-Energy RI beam Productions at CRIB

Direct reactions such as (p,n), (d,p) and (³He,n) in inverse kinematics are used for production...large cross section Many RI beams have been produced at CRIB: ⁷Be, ⁸B, ⁸Li, ¹³N, ¹⁷N, ¹⁷F, ¹⁸F, ¹⁸Ne, ²¹Na, ²²Mg, ²³Mg, ²⁵Al, ²⁶Si, ³⁹Ar, ... typically 10⁴-10⁶ pps

RI beam	Primary beam	Reaction	Cross sectio n	Target	Intensity
¹⁰ С 6.1 <i>А</i> MeV	¹⁰ B(4+) 7.8 <i>A</i> MeV (200 pnA)	p(¹⁰ B, ¹⁰ C)n	2 mb	CH ₄ gas 1.3 mg/cm ²	(1.6×10 ⁵ pps)
¹⁴ 0 6.7 <i>A</i> MeV	¹⁴ N(6+) 8.4 <i>A</i> MeV (500 pnA)	p(¹⁴ N, ¹⁴ O)n	8 mb	CH ₄ gas 1.3 mg/cm ²	(1.7×10 ⁶ pps)
¹² N 3.9 <i>A</i> MeV	¹⁰ B(4+) 7.8 <i>A</i> MeV 200 pnA	³ He(¹⁰ B, ¹² N)n	5 mb	³ He gas 0.25 mg/cm ²	2.5×10 ³ pps
¹¹ C 3.4 <i>A</i> MeV	¹⁰ B(4+) 7.8 <i>A</i> MeV 200 pnA	3 He(10 B, 12 N*)n 12 N* $\rightarrow {}^{11}$ C+p	≈20 mb	³ He gas 0.25 mg/cm ²	1.6×10 ⁴ pps

(Dan)

¹⁴N

 $^{12}\mathbf{B}$

¹⁵N

¹⁴C

 $^{13}\mathbf{B}$

13N

 ^{11}B

p-decay

(p,n)

2010 Jun 16-18

EENEN10

Developments on going by CNS

- Ion source Development for Hyper ECR and superconducting-magnet ECR.
- AVF cyclotron Beam acceleration in wider energy range. Operation with a larger turn number is being tested. (From 9-10 MeV/u to 11MeV/u.)
- Non-destructive Beam Monitor (S. Watanabe)
- Cryogenic gas target for RI-beam production Working stably for many experiments.
- Wien filter Improvement on the insulator cleaning, for a better stability.
- Detectors for low-energy RI beams
 - \checkmark MCP as a beam profile monitor.
 - ✓ Active target (GEM-MSTPC), for measurements of reactions such as ¹⁸Ne(α ,p). (T. Hashimoto).

Cryogenic gas target: design

Features:

- Lq. N₂ cooling (automatic refill) for the better cooling power (~100 W) and thicker target.
- Forced target gas flow (>30 l/min) to have a better cooling, and to avoid target density reduction by the high-current beam.
- Oxygen density monitoring

Target density reduction by heat

- High heat deposition (>5 mW/mm) at a gas target is known to reduce the gas density around the beam track (J. Görres et al., 1980).
- In our measurement, the target density was reduced by ~30% due to the high heat deposition of 7.4W (65 mW/mm in the gas).
- We succeeded in minimizing the reduction to ~5% by making a forced circulation of the target gas.
- H. Yamaguchi *et al.*, Nucl. Instr. Meth. A **805** (2008) 546.
- *2010 Jun 16-18 EENEN10*

Astrophysics study at CRIB: ⁷Be(p,γ)⁸B

- Astrophysically important reaction: ${}^{7}\text{Be}(\dot{p}, \gamma){}^{8}\dot{B}$
 - ✓ ⁸B neutrino ... important for the solar model.
 - S-factor (eV-b) ✓ Nucleosynthesis in some enviroments (hot p-p chain etc.)
- Astrophysical S-factor $S_{17}(0)$ determined by ⁷Be(\dot{p}, γ)⁸B cross section.

$$\sigma(E) = \frac{S(E)}{E} \exp\{-2\pi\eta(E)\}$$

- For a precise determination of S₁₇,
 - ✓ resonances in ⁸B may affect the S-factor _ the resonance structure must be studied.

- Now we know $S_{17}(0)$ with the • uncertainty of 6-8%.
 - Junghans et al, PRC (2003),
 - Cyburt *et al.*, PRC (2004),
 - Schümann et al., PRC (2006).

⁷Be+p elastic resonance scattering

V.Z. Gol'dberg *et al*, JETP Lett. (1998), another measurement in G.V. Rogachev *et al*, Phys. Rev. C (2001).
2010 Jun 16-18 EENEN10

Method (Experimental setup)

Thick target method in inverse kinematics: all the ⁷Be were stopped in the CH₂ target, and recoil protons (E_{max}=23 MeV) were detected by silicon detectors (60 msr x 4 sets, covering up to 45 degree).

FFNFN10

2010 Jun 16-18

Excitation function of ⁷Be+p

Center-of-mass energy (NeV)

 R-matrix fit was performed for the measured excitation function. The overall shape was roughly reproduced by introducing two new states, 1⁻ and 3⁺, and parameters of the 2⁻ state were determined with improved precisions.

S₁₇(0) with 2- resonance

• Resonant contribution by the 2- resonance... evaluated by the Breit-Wigner formula (for 3 parameter sets). Negligible at the solar energy.

•Nonresonant contribution ...discussed in Barker et al.(2000), They assumed consistent energy and width for the 2- state with ours.

2010 Jun 16-18 **EENEN10**

¹³N+p; ¹⁴O resonances relevant to X-ray burst/SN

Previous measurements for ¹¹C structure

- Structure studies from the ¹⁰B+p channel... Hunt et al. (1956), Overlay and Whaling (1962), Jenkin et al. (1964), etc.
- ⁷Be(α,γ) direct reaction measurement Hardie *et al.* (1984)... 15µA α beam bomberded 5x10¹⁶ atoms/cm²
 ⁷Be target, only at the energies of two resonances (8.1 & 8.4 MeV).
- Resonance parameters of high excited states are not fully determined.
- We are going to perform a measurement of ⁷Be(α,α) for the structure study.

2010 Jun 16-18 **EENEN10**

Spin, parity Excitation energy [keV] $(7/2^{-})$ 9970 9780 $(5/2^{-})$ $(3/2^{-})$ Studied from 9650 T9-5 ¹⁰B+p channel Energy region to be studied $5/2^{+}$ 9200 $5/2^{+}$ 8699 8690 ¹⁰B+*p* 8655 $7/2^{+}$ 2 5/2-8421 ⁷Be(α ,y) reaction was measured (Hardie et al., 1984) 8105 $3/2^{-}$ 0.5 0.1 $3/2^{+}$ 7543 7500 ⁷Be+α ¹¹C J^π=3/2⁻ 0

Method; measurement

- Thick target method with inverse kinematics ... An efficient method to measure excitation function.
 - ✓ ⁷Be beam is monitored by a PPAC (or an MCP detector).
 - ✓ ⁷Be beam stops in a thick helium gas target (200 mm-long, 1.6 atm).
 - Recoiled α particles are detected by ΔE-E counter (10 µm and 500 µm Si detectors) at forward angle.
 - Nal array for γ-ray measurement.
- Energy range to be scanned:

 E_{cm} : 1 - 5.5 MeV, E_{α} : 3 - 14 MeV.

2010 Jun 16-18

Excitation function

• Measured energy of $\alpha \ \square \ \mathsf{E}_{\mathsf{cm}}$

Excitation function will be obtained.

• Expected spectrum calculated with **R-matrix** formalism:

2010 Jun 16-18

⁷Li+ α experiment; Purpose

•Feasibility test of the 7Be+ α experiment.

•New measurement of the excitation functions of ${}^{7}Li+\alpha$ elastic/inelastic scattering at 180 deg in c.m. angle, using thick target method in inverse kinematics. Better energy resolution (30 keV) than the Cusson et al. data [Nucl. Phys (1966)] (50 keV?).

•Astrophysical interests?:

Related to $^{7}Li(\alpha,\gamma)$, measured only at resonances:

•Paul et al., PR 164 (1967) 1332.

•Hardie et al., PRC, 29 (1984)1199. <- this is the only known measurement of ${}^{7}\text{Be}(\alpha,\gamma)$ as well.

T<0.1GK; ⁷Li(p, α)⁴He (p-p chain).⁷Be(α , γ)¹¹C(β ⁺ ν)¹¹B is more important.

Higher temperature: triple- α should be fast, but may play important role in some environments; "v-process" in core-collapse supernovae, big-bang nucleosynthesis.

⁷Li+α Levels and References

	1		-			1
	$E_{\alpha}{}^{D}$	$E_{\alpha}{}^{c}$	$\Gamma_{\rm c.m.}$	$E_{\mathbf{x}}$	J^{π}	
	(keV)	(keV)	(keV)	$(MeV \pm keV)$		
	1900 ± 10		130 ± 30	9.873 ± 10	$\frac{3}{2}^{+}$	
	2480 ± 50		150 ± 40	10.24 ± 50	$\frac{3}{2}^{(-)}, \frac{1}{2}$	
		2630 ± 30	80 ± 30	10.34 ± 30	$\left \frac{5}{2}^{-}, \frac{7}{2} \right $	
	3040 ± 10	3040	70 ± 10	10.599 ± 10	$\frac{7}{2}^+$	
	3600 ± 50		4500	10.96 ± 50	$\frac{5}{2}^{-}$	
		4120 ± 30	90 ± 50	11.29 ± 30	$\frac{9}{2}^{+}$	
	4430 ± 50	4430		11.49 ± 50		
	4600 ± 50		150 ± 50	11.59 ± 50	То	be
	5050 ± 30		150 ± 50	11.88 ± 30	studi	ed at
		5300 ± 200	≈ 1000	12.0 ± 200		
		5500 ± 100	60 ± 50	(12.17 ± 100) ^d		
	6100 ± 30		150 ± 50	12.55 ± 30		
	6850 ± 60		270 ± 50	13.03 ± 60		
	$(7200 \pm 50)^{\text{e}}$		50 ± 50	$(13.25 \pm 50)^{\rm d}$		
		7800 ± 100	500 ± 200	$(13.63 \pm 100)^{\rm d}$		
	(8450 ± 200) f		500 ± 200	(14.0 ± 200)		
	$(9450 \pm 200)^{\rm f}$		≤ 250	(14.7 ± 200)		
		9950 ± 20	500 ± 200	$(15.00 \pm 20)^{\rm d}$		
($(11200 \pm 200)^{\rm f}$			(15.8 ± 200)		

Table 11.6: Structure in ⁷Li(α , α)⁷Li and ⁷Li(α , α')⁷Li^a

 $^{\rm a}$ Mostly from (1966CU02). For other parameters see Table 11.9 in (1975AJ02). See also Table 11.8 in (1985AJ01).

^{b 7}Li($\alpha, \alpha' \gamma$)⁷Li: σ (total).

^{c 7}Li(α, α_0)⁷Li.

^e Anomaly in angular distribution.

^f Observed at $\theta = 60^{\circ}$.

EENEN10

⁷Li+ α elastic scattering:

- Cusson, Nucl. Phys. 86 (1966) 481-508...⁷Li+α, E_α=1.6-12 MeV.
- Paul *et al.*, Phys. Rev. **164** (1967) 1332...⁷Li+α, 1.3-3.2 MeV
- Bingham *et al.*, Nucl. Phys. A **175** (1971) 374-384... ⁷Li/⁶Li+α, 12.0-18.5 MeV.
- Bohlen *et al.*, Nucl. Phys. A **179** (1972) 504...⁷Li+α, 2.5-4.5 MeV
- Kelleter *et al.*, Nucl. Phys. A **210** (1973) 502-508...⁷Li+α, 8.6-22.5 MeV.

The data are:

"Mostly from 1966CU02"

 J^{π} is determined only in the lowenergy region by ${}^{7}Li(\alpha,\alpha)$.

^d ⁷Li(α , n)¹⁰B threshold.