Coulomb Dissociation measurement of the ${}^{15}O(2p,\gamma){}^{17}Ne$ cross section

J. Marganiec

ExtreMe Matter Institute EMMI, GSI Darmstadt, Germany

outline

- *rp* process and motivation;
- coulomb dissociation as a source of information on radiative capture processes;
- experimental setup;
- results
 - backgraund subtraction;
 - coulomb dissociation cross section;
 - strength function;
 - $(\gamma, 2p)$ cross section;
- summary.

rp process

- in cataclysmic binary systems (novae, X-ray bursts);
- sequence of proton captures and β^+ decays;
- the proton capture is inhibited and the long half-life => the waiting points.

motivation

1. the nucleus $^{15}O =$ a waiting point for the break-out of the CNO cycle

CNO cycle: ${}^{12}C(p,\gamma){}^{13}N(e,v){}^{13}C(p,\gamma){}^{14}N(p,\gamma){}^{15}O(e,v){}^{15}N(p,\alpha){}^{12}C$

Heavier elements: ${}^{15}O(\alpha, \gamma){}^{19}Ne(p, \gamma){}^{20}Na$

Alternative reaction: ${}^{15}O(2p,\gamma){}^{17}Ne(\beta){}^{17}F(p,\gamma){}^{18}Ne(2p,\gamma){}^{20}Mg(\beta){}^{20}Na$

2. the reaction rate can be enhanced by a few orders of magnitude by taking into account the three-body continuum states;
Z▲

coulomb dissociation as a source of information on radiative capture processes

coulomb dissociation as a source of information on radiative capture processes

Advantages:

- high virtual photon flux;
- large cross section at low E_{cm};
- charged particle detection;
- kinematically focused;
- experiments with radioactive ion beams possible.

Disadvantages:

- indirect method;
- bad energy resolution;
- multipole admixtures must be clarified;
- nuclear contributions.

¹⁷Ne ground state

The uncertain part => the configuration of the two protons outside the ¹⁵O core, which occupy either *s*-wave ([s^2]) or *d*-wave ([d^2]) orbitals

$$\Psi_{g.s.} \sim \alpha[s^2] + \beta[d^2]$$

production of exotic beam setup

background subtraction

coulomb dissociation cross section

coulomb dissociation cross section

E1 strength function

E (MeV)

$(\gamma, 2p)$ cross section

summary

- the Coulomb dissociation method => only one way to the three particles in entrance channel measurements;
- the preliminary Coulomb dissociation cross section is consistent with the theoretical prediction;
- ¹⁷Ne is the halo nucleus ?
- the calculation of ${}^{15}O(2p,\gamma){}^{17}Ne$ cross section => in progress.

Collaboration:

T. Aumann¹, M. Heil¹, R. Plag¹, F. Wamers¹ for LAND-R³B collaboration

1. Kernreaktionen und Nuklear Astrophysik, GSI Darmstadt, Germany

Thank you!