Beryllium Isotopes studied in Fermionic Molecular Dynamics

Thomas Neff

2nd EMMI-EFES Workshop on Neutron-Rich Exotic Nuclei EENEN10

> RIKEN, Tokyo June 16, 2010

Overview

Effective Nucleon-Nucleon interaction: Unitary Correlation Operator Method

Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. 65 (2010) 50

- Short-range Central and Tensor Correlations
- ab initio Few-Body Calculations

Many-Body Method:

Fermionic Molecular Dynamics

- Model
- Beryllium Isotopes

Unitary Correlation Operator Method Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm
- central correlations

- strong dependence on the orientation of the spins due to the tensor force
- tensor correlations

Unitary Correlation Operator Method Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

 strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

- central correlations

- strong dependence on the orientation of the spins due to the tensor force
- tensor correlations

the nuclear force will induce strong short-range correlations in the nuclear wave function

• Unitary Correlation Operator Method

Realistic Effective Interaction

central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin orientation

Unitary Correlation Operator Method

Realistic Effective Interaction

Neff and Feldmeier, Nucl. Phys. A713 (2003) 311

 $\langle T \rangle$

 $\langle H \rangle$

 $\langle V \rangle$

Unitary Correlation Operator Method Correlated Interaction in Momentum Space

${}^{3}S_{1}$ bare

bare interaction has strong off-diagonal matrix elements connecting to high momenta

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

Unitary Correlation Operator Method Correlated Interaction in Momentum Space

bare interaction has strong off-diagonal matrix elements connecting to high momenta

correlated interaction is **more attractive** at low momenta

off-diagonal matrix elements connecting low- and

high- momentum states are **strongly** reduced

${}^{3}S_{1} - {}^{3}D_{1}$ bare

Unitary Correlation Operator Method Correlated Interaction in Momentum Space

bare interaction has strong off-diagonal matrix elements connecting to high momenta

correlated interaction is **more attractive** at low momenta

off-diagonal matrix elements

connecting low- and high- momentum states are **strongly reduced** ${}^{3}S_{1} - {}^{3}D_{1}$ bare

similar to V_{Iow-k} Bogner, Kuo, Schwenk, Phys. Rep. **386**, 1 (2003)

Roth, Hergert, Papakonstaninou, Neff, Feldmeier, Phys. Rev. C 72, 034002 (2005)

Fermionic Molecular Dynamics

Motivation

FMD Wave Functions

Nucleon-Nucleon Interaction

Mean-Field Calculations

Projection After Variation, Variation After Projection and Multiconfiguration

Exotica: Special Challenges

Al-Khalili, Nunes, J. Phys. G 29, R89 (2003)

Fermionic

Slater determinant

$$\boldsymbol{Q} \rangle = \mathcal{A}\left(\left| \boldsymbol{q}_1 \right\rangle \otimes \cdots \otimes \left| \boldsymbol{q}_A \right\rangle \right)$$

• antisymmetrized A-body state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 Antisymmetrization

FMD Fermionic Molecular Dynamics

Fermionic

Slater determinant

$$|\mathbf{Q}\rangle = \mathcal{A}\left(|\mathbf{q}_1\rangle \otimes \cdots \otimes |\mathbf{q}_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes \left| \chi^{\dagger}_{i}, \chi^{\downarrow}_{i} \right\rangle \otimes \left| \xi \right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle st

Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357 see also Antisymmetrized Molecular Dynamics

H. Horiuchi, Y. Kanada-En'yo

Antisymmetrization

Effective two-body interaction

- FMD model space can't describe correlations induced by residual medium-long ranged tensor forces
- use long ranged tensor correlator "low cutoff" to partly account for that
- no three-body forces: missing spin-orbit strength, saturation properties
- add phenomenological two-body correction term with a momentumdependend central and (isospin-dependend) spin-orbit part (about 15% contribution to potential)
- fit correction term to binding energies and radii of "closed-shell" nuclei (⁴He, ¹⁶O, ⁴⁰Cα), (²⁴O, ³⁴Si, ⁴⁸Cα)

- Outlook:

use **three-body** or **density dependent two-body force** instead of two-body correction term

FMD Mean-Field Calculations

Minimization

• minimize Hamiltonian expectation value with respect to all single-particle parameters q_k

$$\min_{\{q_k\}} \frac{\langle Q | H - T_{cm} | Q \rangle}{\langle Q | Q \rangle}$$

- this is a Hartree-Fock calculation in our particular single-particle basis
- the mean-field may break the symmetries of the Hamiltonian

FMD PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

$$\mathop{\mathbb{P}}_{\sim}^{\pi} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying **constraints** on **radius**, **dipole** moment, **quadrupole** moment or **octupole** moment and minimizing the energy in the projected energy surface for heavier nuclei

$$\mathop{\mathbb{P}}_{\sim}^{\pi}=\frac{1}{2}(1+\pi\underset{\sim}{\Pi})$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) \stackrel{R}{\sim} (\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

FMD

PAV, VAP and Multiconfiguration

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- full Variation after Angular Momentum and Parity Projection (VAP) for light nuclei
- perform VAP in GCM sense by applying **constraints** on **radius**, **dipole** moment, **quadrupole** moment or **octupole** moment and minimizing the energy in the projected energy surface for heavier nuclei

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| \, \mathbf{Q}^{(a)} \, \right\rangle \,, \quad a = 1, \ldots, N \right\}$$

$$\underset{\sim}{P^{\pi}} = \frac{1}{2}(1 + \pi \prod)$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{*}(\Omega) R(\Omega)$$

$$\mathcal{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$\sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \mathcal{H} \mathcal{P}_{KK'}^{J^{\pi}} \mathcal{P}^{\mathbf{P}=0} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha} = E^{J^{\pi}\alpha} \sum_{K'b} \langle \mathbf{Q}^{(\alpha)} | \mathcal{P}_{KK'}^{J^{\pi}} \mathcal{P}^{\mathbf{P}=0} | \mathbf{Q}^{(b)} \rangle \cdot c_{K'b}^{\alpha}$$

Questions

• α -clustering, halos in ¹¹Be and ¹⁴Be, N = 8 shell closure ?

Calculation

- FMD wave functions with two Gaussians per sp-state
- mean field, variation after projection, variation after multiconfiguration mixing
- VAP and multiconfiguration-VAP configurations with mean proton distance as generator coordinate

Observables

- energies
- charge and matter radii, electromagnetic transitions

Beryllium Isotopes Mean field

Variation after Projection

- create configurations by variation after parity and angular momentum projection
- large gain in binding energy compared to mean-field result
- intrinsic states show pronounced cluster structure. Parameters of ⁴He and ³He clusters are close to those of the free clusters

5

VAP 3/2-

0

y [fm]

-5

0.007

0

y [fm]

5

-5

Variation after Projection

Variation after Projection

Beryllium Isotopes Mean proton distance as generator coordinate

Mean proton distance

$$R_{pp}^{2} = \frac{1}{Z^{2}} \langle \sum_{i < j}^{\text{protons}} (\mathbf{r}_{i} - \mathbf{r}_{j})^{2} \rangle$$

 R_{pp} as a measure of α -cluster distance

Mean proton distance as generator coordinate

¹¹Be – "*p*", "*s*" and "*d*"-configurations

- "s"- and "d"-configurations will mix in 1/2⁺ state
- energy surfaces for "p" and "s" similar to those in ¹⁰Be
- "d" surface has minimum at larger cluster distance → d-configuration has a polarized ¹⁰Be core

Binding energies

- large correlation energies due to cluster structure
- loosely bound systems gain most by configuration mixing

Beryllium Isotopes N = 8 Shell Closure ?

- "almost correct" level ordering in ¹¹Be
- ¹²Be ground state dominated by p^2 configuration, sizeable admixture of s^2 and d^2 configurations which strongly mix

Charge Radii

Thomas Neff — EENEN10, 06/16/10

Beryllium Isotopes Matter Radii

Ozawa et al., Nucl. Phys. A693, 32 (2001).

Electromagnetic transitions

¹⁰Be

	FMD(Multiconfig)	Experiment
$B(E2; 2^+_1 \rightarrow 0^+_1)$	11.27 <i>e</i> ² fm ⁴	$9.2 \pm 0.3 \ e^2 \text{fm}^4$
$B(E2; 2^{+}_{2} \rightarrow 0^{+}_{1})$	1.00 <i>e</i> ² fm ⁴	$0.11 \pm 0.02 \ e^2 \text{fm}^4$
$B(E2; 0_2^+ \rightarrow 2_1^+)$	4.99 <i>e</i> ² fm ⁴	$3.2 \pm 1.9 \ e^2 \text{fm}^4$
$B(E1; 0^+_2 \to 1^1)$	0.013 e ² fm ²	$0.013 \pm 0.004 \ e^2 \text{fm}^2$

¹¹Be

	FMD(Multiconfig)	Experiment
$B(E1; 1/2_1^+ \rightarrow 1/2_1^-)$	0.020 <i>e</i> ² fm ²	$0.099 \pm 0.010 \ e^2 \mathrm{fm}^2$
¹² Be		

	FMD(Multiconfig)	Experiment
$B(E2; 2^+_1 \to 0^+_1)$	8.27 <i>e</i> ² fm ⁴	$8.0 \pm 3.0 \ e^2 \text{fm}^4$
$B(E2; 0^{+}_{2} \rightarrow 2^{+}_{1})$	6.50 e ² fm ⁴	$7.0 \pm 0.6 \ e^2 \text{fm}^4$
$M(E0;0^+_1\rightarrow 0^+_2)$	1.05 efm ²	$0.87 \pm 0.03 \text{ efm}^2$
$B(E1;0^+_1\rightarrow 1^1)$	0.08 e ² fm ²	$0.051 \pm 0.003 \ e^2 \mathrm{fm}^2$

McCutchan *et al.*. Phys. Rev. Lett. **103**, 192501 (2009). Nakamura *et al.*, Phys. Lett. **B394**, 11 (1997). Shimoura *et al.*, Phys. Lett. **B654**, 87 (2007). Iwasaki *et al.*, Phys. Lett. **B491**, 8 (2000). Imai *et al.*, Phys. Lett. **B673**, 179 (2009).

¹¹Be-¹⁰Be **Overlaps**

- extended s-wave halo
- $s_{1/2}$ spectroscopic factor larger than results obtained from knockout and transfer reactions

S

Summary

Unitary Correlation Operator Method

- Explicit description of short-range central and tensor correlations
- Decouples low- and high-momentum modes

Fermionic Molecular Dynamics

- Microscopic many-body approach using Gaussian wave-packets
- Projection and multiconfiguration mixing
- Consistent description of well bound states with shell structure and loosely bound states of cluster or halo nature

Beryllium Isotopes

- α -clustering, dissappearance of N = 8 shell closure
- *s*-wave halo in ¹¹Be, spectroscopic amplitudes
- ¹²Be ground state dominantly p^2 consistent with matter radius, waiting for charge radius measurement
- charge and matter radii, electromagnetic transitions

Thanks

to my Collaborators

S. Bacca, A. Cribeiro, R. Cussons, H. Feldmeier, P. J. Ginsel, B. Hellwig, K. Langanke, R. Torabi, D. Weber

GSI Darmstadt

H. Hergert, R. Roth

Institut für Kernphysik, TU Darmstadt