Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

Koichi Sato (Kyoto Univ./RIKEN)
Nobuo Hinohara (RIKEN)
Takashi Nakatsukasa (RIKEN)
Masayuki Matsuo (Niigata Univ.)
Kenichi Matsuyanagi (RIKEN/YITP)

Oblate- prolate shape coexistence phenomena in proton-rich Kr isotopes

We study oblate-prolate shape mixing in the low-lying state of $72,74,76 \mathrm{Kr}$ using

5D quadrupole collective Hamiltonian

 (Generalized Bohr-Mottelson Hamiltonian) :$$
\begin{aligned}
H & =T_{\text {vib }}+T_{\mathrm{rot}}+V(\beta, \gamma) \text { collective potential } \\
T_{\mathrm{vib}} & =\frac{1}{2} D_{\beta \beta}(\beta, \gamma) \dot{\beta}^{2}+D_{\beta \gamma}(\beta, \gamma) \\
\beta & \dot{\gamma}+\frac{1}{2} D_{\gamma \gamma}(\beta, \gamma) \dot{\gamma}^{2}
\end{aligned}
$$

$$
T_{\text {rot }}=\sum_{k=1}^{3} \frac{1}{2}{ }_{\mathcal{J}_{k}} \omega_{k}^{2} \quad \text { vibrational inertial mass }
$$

The collective Hamiltonian is derived microscopically by means of the "Constrained HFB+ Local QRPA"(CHFB+LQRPA) method, which we recently developed on the basis of the Adiabatic Self-consistent Collective Coordinate (ASCC) method

Matsuo, Nakatsukasa, and Matsuyanagi, Prog.Theor. Phys. 103(2000), 959.

$\xrightarrow{\longrightarrow}$
Application of 1D ASCC to shape coexistence in Se and
Kr
N. Hinohara, et al, Prog. Theor. Phys. 119(2008), 59; PRC 80 (2009),014305.
an approximation of the 2-dimensional ASCC method.

Constrained HFB + Local QRPA method:

Solve the constrained HFB eq. at each point on the (β, γ) plane

$$
\overline{\mathrm{N}, \mathrm{Z}, \beta, \gamma}||\phi(\beta, \gamma)\rangle V(\beta, \gamma) \lambda(\beta, \gamma) \mu(\beta, \gamma)
$$

Solve the local QRPA eqs. on top of each CHFB state $|\phi(\beta, \gamma)\rangle$

$$
\omega_{\alpha}^{2}(\beta, \gamma) \hat{Q}^{(\alpha)}(\beta, \gamma) \hat{P}^{(\alpha)}(\beta, \gamma)
$$

Calculate the vibrational masses
Local QRPA masses

$$
D_{\beta \beta}(\beta, \gamma) \quad D_{\beta \gamma}(\beta, \gamma) D_{\gamma \gamma}(\beta, \gamma) \quad \mathcal{J}_{k}(\beta, \gamma)
$$

Include the contribution from the time-odd component of the mean field, unlike widely-used cranking masses

Numerical results

Collective potential

\diamond : absolute minimum
oblate

oblate?
Dynamical effects beyond the mean field should be taken into account

Microscopic Hamiltonian:P+QQ model

parameters are fitted to the pairing gap and the quadrupole deformation obtained with Skyrme-HFB by Yamagami et al. M. Yamagami et al.,NPA 693(2001) 579.

LQRPA moments of Inertia

\longrightarrow Extention of Thouless-Valatin Mol to non-equilibrum HFB pts.

Local QRPA vibrational masses: strongly dependent on (β, γ)

Collective wave functions squared for $72 \mathrm{Kr} \quad \beta^{4} \sum_{K}\left|\Phi_{I K k}(\beta, \gamma)\right|^{2}$

Excitation Energies and B(E2)

() ...B(E2) $\mathrm{e}^{2} \mathrm{fm}^{4}$

effective charge: $e_{p o l}=0.834$

- The interband transitions become weaker as angular momentum increases.
\Longleftrightarrow development of the localization of w.f.
O The time-odd mean-field lowers the excitation energies.

Collective wave functions squared for $74 \mathrm{Kr} \beta^{4} \sum_{K}\left|\Phi_{I K k}(\beta, \gamma)\right|^{2}$

Excitation Energies and B(E2) for 74Kr

EXP: E. Clément et al., PRC 75,054313 (2007).

Main features of the experimental data:
;) Increasing tendency of $B(E 2)$ in the ground band \square $>$
(-) Strong $\mathrm{O}_{2}->2_{1}$ transition \square
(-) Equal strength of the $2_{2}->2_{1}$ and $2_{2}->0_{2}$ transitions \square
well reproduced!Strong $\mathrm{O}_{3} \rightarrow 2_{1}$ transition \square not reproduced

Excitation Energies and B(E2) for 76 Kr

() ...B(E2) $\mathrm{e}^{2} \mathrm{fm}^{4}$

effective charge: $e_{\text {pol }}=0.834$
EXP: E. Clément et al., PRC 75,054313 (2007).

(:) Increasing tendency in the ground band
(-) Strong $\mathrm{O}_{2}->2_{1}$ transition

(;) $B\left(E 2 ; 2_{2} \rightarrow 0_{2}\right) \gg B\left(E 2 ; 2_{2} \rightarrow 2_{1}\right)$ \square
well reproduced!

Spectroscopic quadrupole moments Q

Exp. (1st) : Theory(1st):
Exp.(2nd) :- - Theory(2nd):O
Exp. (3rd) :- Theory (3rd): Δ

Shape transition from oblate in 72 Kr to prolate in $74,76 \mathrm{Kr}$ was reproduced.

E0 transition strengths $\rho^{2}\left(E 0 ; 0_{2}^{+} \rightarrow 0_{1}^{+}\right)$

GCM(GOA):

HFB-based configuration mixing calculation using the Gogny D1S interaction
M. Girod et al., PLB 676 (2009) 39.

Exp: C. Chandler et al. PRC 56 (1997) 2924.
E. Bouchex et al., PRL 90 (2003) 082502.

The calculated result reproduces well the experimental data both qualitatively and quantitatively!

The ρ (E0) takes a maximal value at $A=74$, which reflects the shape transition.

Summary

- We have studied the shape coexistence/mixing in $72,74,76 \mathrm{Kr}$ using 5D quadrupole Hamiltonian derived by means of the CHFB+LQRPA method.
- Our results indicate a shape transition from the oblate ground state in 72 Kr to the prolate one in $74,76 \mathrm{Kr}$, which is consistent with the experiment.

O The basic features of the low-lying states in these nuclei are determined by the interplay of the large-amplitude shape fluctuation in the triaxial shape degree of freedom, the β-vibrational excitations and the rotational motions.

- The rotational motion plays an important role for the growth of the localization of the vibrational wave functions in the (β, γ) plane.

Outlook

More realistic interaction
Full 2D ASCC Method

