Shape mixing dynamics in the low-lying states of proton-rich Kr isotopes

Koichi Sato (Kyoto Univ./RIKEN) Nobuo Hinohara (RIKEN) Takashi Nakatsukasa (RIKEN) Masayuki Matsuo (Niigata Univ.) Kenichi Matsuyanagi (RIKEN/YITP)

Oblate- prolate shape coexistence phenomena in proton-rich Kr isotopes

- Irregularities of the excitation spectra
- Systematics of the excited 0+ energies and E0 transition strengths

Shape transition from the oblate ground state in 72Kr to the prolate ground state in 74,76,78Kr We study oblate-prolate shape mixing in the low-lying state of 72,74,76Kr using

5D quadrupole collective Hamiltonian (Generalized Bohr-Mottelson Hamiltonian) : $H = T_{\text{vib}} + T_{\text{rot}} + \overline{V(\beta,\gamma)} \text{ collective potential}$ $T_{\text{vib}} = \frac{1}{2} \underbrace{D_{\beta\beta}(\beta,\gamma)}_{\beta\beta} \dot{\beta}^2 + \underbrace{D_{\beta\gamma}(\beta,\gamma)}_{\beta\gamma} \dot{\beta}\dot{\gamma} + \frac{1}{2} \underbrace{D_{\gamma\gamma}(\beta,\gamma)}_{\gamma\gamma} \dot{\gamma}^2$ vibrational inertial masses $T_{\text{rot}} = \sum_{k=1}^{3} \frac{1}{2} \underbrace{\mathcal{I}_k}_{k} \omega_k^2$ rotational moments of inertia

The collective Hamiltonian is derived microscopically by means of the "Constrained HFB+ Local QRPA"(CHFB+LQRPA) method, which we recently developed on the basis of the Adiabatic Self-consistent Collective Coordinate (ASCC) method Matsuo, Nakatsukasa, and Matsuyanagi, Prog. Theor. Phys. 103(2000), 959.

> Application of 1D ASCC to shape coexistence in Se and Kr N. Hinohara, et al, Prog. Theor. Phys. 119(2008), 59; PRC 80 (2009).014305.

an approximation of the 2-dimensional ASCC method.

Numerical results

Collective potential

parameters are fitted to the pairing gap and the quadrupole deformation obtained with Skyrme-HFB by Yamagami et al. M. Yamagami et al.,NPA 693(2001) 579.

LQRPA moments of Inertia

→ Extention of Thouless-Valatin MoI to non-equilibrum HFB pts.

Local QRPA vibrational masses:

strongly dependent on (β, γ)

⁷²Kr

Collective wave functions squared for 72Kr $\ eta^4 \sum_K |\Phi_{IKk}(eta,\gamma)|^2$

⁷²Kr

The interband transitions become weaker as angular momentum increases.
development of the localization of w.f.
The time-odd mean-field lowers the excitation energies.

⁷⁴Kr

Collective wave functions squared for 74Kr $\beta^4 \sum_K |\Phi_{IKk}(\beta,\gamma)|^2$

Excitation Energies and B(E2) for 74Kr

EXP: E. Clément et al., PRC 75,054313 (2007).

Excitation Energies and B(E2) for 76Kr () ...B(E2) e² fm⁴ effective charge: e_{pol} =0.834

EXP: E. Clément et al., PRC 75,054313 (2007).

- \bigcirc Increasing tendency in the ground band \bigcirc \bigcirc Strong 0₂ -> 2₁ transition \bigcirc
- \bigcirc B(E2; 2₂ -> 0₂) >> B(E2; 2₂ -> 2₁) \bigcirc

well reproduced!

Shape transition from oblate in 72Kr to prolate in 74,76Kr was reproduced.

E0 transition strengths $\rho^2(E0; 0_2^+ \rightarrow 0_1^+)$

GCM(GOA):

HFB-based configuration mixing calculation using the Gogny D1S interaction

M. Girod et al., PLB 676 (2009) 39.

Exp: C. Chandler et al. PRC 56 (1997) 2924. E. Bouchex et al., PRL 90 (2003) 082502.

The calculated result reproduces well the experimental data both qualitatively and quantitatively!

The ρ (E0) takes a maximal value at A=74, which reflects the shape transition.

Summary

- We have studied the shape coexistence/mixing in 72,74,76Kr using 5D quadrupole Hamiltonian derived by means of the CHFB+LQRPA method.
- Our results indicate a shape transition from the oblate ground state in 72Kr to the prolate one in 74,76Kr, which is consistent with the experiment.
- The basic features of the low-lying states in these nuclei are determined by the interplay of the large-amplitude shape fluctuation in the triaxial shape degree of freedom, the β -vibrational excitations and the rotational motions.
- The rotational motion plays an important role for the growth of the localization of the vibrational wave functions in the (β , γ) plane.

Outlook More realistic interaction Full 2D ASCC Method