Derivation of IBM Hamiltonian and low－ lying states of heavy neutron－rich nuclei

K．Nomura（U．Tokyo）

collaborators：
T．Otsuka，N．Shimizu（U．Tokyo），and L．Guo（RIKEN）

Interacting Boson Model (IBM) and microscopic basis

Arima and lachello (1974)

- sd bosons (collective SD pairs of valence nucleons)
- Dynamical symmetries (U(5), SU(3) and O(6)) and their mixtures with phenomenologically adjusted parameters
- Microscopic basis
by shell model: successful for spherical \& γ-unstable shapes (OAI mapping)
- Otsuka, Arima, lachello and Talmi (1978)
- Otsuka, Arima and lachello (1978)
- Gambhir, Ring and Schuck (1982)
- Allaat et al (1986)
- Deleze et al (1993)
- Mizusaki and Otsuka (1997)

General cases \rightarrow ?

This limitation may be due to the highly complicated shell-model interaction, which becomes unfeasible for strong deformation.

Potential energy surface (PES) by mean-field models (e.g., Skyrme) can be a good starting point for deformed nuclei.

We construct an IBM Hamiltonian starting from the mean-field (Skyrme) model. \rightarrow low-lying states, shapephase transitions etc.

Note:

- algebraic features
- boson number counting rule (\# of valence nucleons $/ 2=\#$ of bosons) of IBM are kept.

Derivation of IBM interaction strengths

Potential Energy Surface (PES) in $\beta \gamma$ plane

IBM interaction strengths

Diagonalization of IBM Hamiltonian

Levels and wave functions with good J \& $N(Z)$ + predictive power

- HF (Skyrme) PES

density-dependent zero-range pairing force in BCS approximation, mass quadrupole constraint

- Boson Hamiltonian

$$
H_{\mathrm{IBM}}=E_{0}+\epsilon\left(n_{d \pi}+n_{d v}\right)+\kappa Q_{\pi} Q_{v}+\alpha L L \longleftarrow \begin{aligned}
& \text { kinetic term irrelevant to } \\
& \text { the PES (discussed later) }
\end{aligned}
$$

IBM PES (coherent state formalism)

Dieperink and Scholten (1980) ; Ginocchiio and Kirson (1980) ; Bohr and Mottelson (1980)

$$
\left\langle H_{\text {IBM }}\right\rangle=\frac{\langle\Phi| H_{\text {IBM }}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}
$$

$$
|\Phi\rangle \propto \prod_{\rho}\left[s_{\rho}^{\dagger}+\beta_{\rho}\left\{d_{\rho 0}^{\dagger} \cos \gamma_{\rho}+\frac{1}{\sqrt{2}}\left(d_{\rho 2}^{+}+d_{\rho-2}^{+}\right) \sin \gamma_{\rho}\right\}\right]^{n_{\rho}}|0\rangle
$$

$$
\left\{\begin{array}{l}
\beta_{\pi}=\beta_{v} \equiv \beta_{\mathrm{B}} \\
\gamma_{\pi}=\gamma_{v} \equiv \gamma_{\mathrm{B}}
\end{array}\right.
$$

Some formulas for translation of (β, γ) 's

$$
\beta_{\text {IBM }}=C_{\beta} \beta_{H F}, \quad \gamma_{I B M}=\gamma_{H F}
$$

Potential energy surfaces in $\beta \gamma$ planes (Sm)

IBM-2 Hamiltonian

$$
H_{\text {IBM }}=\underbrace{E_{0}+\epsilon\left(n_{d \pi}+n_{d v}\right)+\kappa Q_{\pi}^{\chi_{\pi}} \cdot Q_{v}^{\chi_{v}}}_{\begin{array}{l}
\text { determined by the } \\
\text { calibration with } \\
\text { HF PES }
\end{array}}+\alpha L L
$$

A general boson Hamiltonian contains interaction terms which cannot be determined from PES fits. Then, we propose

```
                mapping
```


Rotation of strongly-deformed object is considered.

The difference of the overlap requires the rotational "mass" (kinetic) term in the boson Hamiltonian.

This work: comparison of moment of inertia
\rightarrow coefficient of LL

Determination of the coefficient of $L L$ term

Derived interaction strengths and excitation spectra

Shape-phase transition occurs between $U(5)$ and $S U(3)$ limits with $X(5)$ critical point

Higher-lying yrast levels
$N=96$ nuclei
The effect of $L L$ is robust for axially symmetric strong deformation, while it is minor for weakly deformed or γ-soft nuclei.

Binding energy

K.N. et al., PRC81, 044307 (2010)
$B E^{\text {calc }}-B E^{\text {exp } t}$

Correlation effect included by the IBM Hamiltonian

Similar arguments by

- GCM
M.Bender et al., PRC73, 034322 (2006)
- IBM phenomenology
R.B.Cakirli et al., PRL102, 082501 (2009)

—IBM(SLy4)

Potential energy surface for W with $82<N<126$

More neutron holes

Potential energy surface for Os with $82<N<126$

More neutron holes

Evolution of low-lying spectra for $82<N<126$

For ${ }^{198} \mathrm{Os}, \mathrm{E}\left(2_{1}{ }^{+}\right), \mathrm{E}\left(4^{+}{ }_{1}\right)$ are consistent with the recent experiment at GSI.

Zs.Podolyak et al., PRC79, 031305(R) (2009)

Summary and Outlook

- Determination of IBM Hamiltonian by mean-field
- spectra and wave function with good J\& N
- dynamical and critical-point symmetries
(prediction for exotic nuclei)
- quantum fluctuation effect on binding energy
- Some response of the nucleonic system can be formulated, which corresponds to microscopic origin of kinetic LL term.
- Use of other interactions, e.g., Gogny (in progress), a more realistic force

References:

- K.N., N. Shimizu, and T. Otsuka, Phys. Rev. Lett. 101, 142501 (2008)
- K.N., N. Shimizu, and T. Otsuka, Phys. Rev. C 81, 044307 (2010)
- K.N., T. Otsuka, N. Shimizu, and L. Guo, in preparation (2010)

For strong deformation, the difference between the overlap of the nucleon wave function and that of the corresponding boson wave function is supposed to become larger.

This leads to the introduction of the rotational mass (kinetic) term in the boson Hamiltonian

We formulate the response of the rotating nucleon system in terms of bosons, in order to determine the coefficient of kinetic LL term of IBM.

Fit by using wavelet transform (WT), which is suitable for analyzing localized signal.

other application to physical system, e.g.,
Shevchenko et al, PRC77, 024302 (2008)

WT of the PES with axial sym.

$$
\begin{aligned}
& \tilde{E}(\delta \beta, \beta)=\frac{1}{\sqrt{\delta \beta}} \int \underset{\uparrow \uparrow}{E\left(\beta^{\prime}\right) \Phi^{\star}}\left(\frac{\beta-\beta^{\prime}}{\delta \beta}\right) d \beta^{\prime} \\
& \uparrow \underset{\text { position }}{\uparrow} \sqrt{\delta \beta} \uparrow \underset{\text { basis }}{\uparrow} \\
& \text { scale (frequency) PES (HF/IBM) }
\end{aligned}
$$

Derivation of kinetic LL interaction strength

Cranking calculation

$>$ MOI of IBM (only one parameter α):

$$
\begin{aligned}
& |\Phi\rangle=\prod_{\rho}\left(s_{\rho}^{\dagger}+\sum_{\mu} a_{\rho \mu} d_{\rho \mu}^{\dagger}\right)^{n_{\rho}}|0\rangle, \quad a_{ \pm 1} \neq 0 \\
& \delta\langle\Phi| H_{\mathrm{IBM}}-\omega L_{x}|\Phi\rangle=0 \Longrightarrow I=\left.\frac{\left\langle\hat{L}_{x}\right\rangle}{\omega}\right|_{a_{\pi 1}=a_{v 1} \rightarrow 0}
\end{aligned}
$$

Schaaser and Brink (1984)
> Microscopic input (Inglis-Belyaev MOI):

$$
I \equiv \mathcal{I}_{\mathrm{IB}}=2 \cdot \sum_{k, k^{\prime}>0} \frac{\left.\left|\langle k| \hat{L}_{x}\right| k^{\prime}\right\rangle\left.\right|^{2}}{E_{k}+E_{k^{\prime}}}\left(u_{k} v_{k^{\prime}}-u_{k^{\prime}} v_{k}\right)^{2}
$$

_- Inglis-Belyaev
...... Experimental E($\left.2_{1}{ }^{+}\right)$
-=- IBM w/o LL

Strength of LL term is determined by adjusting the moment of inertia (MOI) of IBM to that of HF.

