Cluster features in ground and excited states of ¹²C and ⁸He -- dineutron correlation in ⁸He --

Yoshiko Kanada-En'yo (Kyoto University)

Collaborators: H. Feldmeier and T. Suhara

dineutron correlations (spin=0 S-wave nn pair)

Two dineutrons in ⁸He

1. He isotopes are calculated with a method of Antisymmetrized Molecular Dynamics(AMD).

2. Dineutron correlations are discussed by analyzing two-neutron density.

Formulation

AMD wave function

The wave function is equivalent to a simple version of FMD. For Hamiltonain, we use phenomenological effective nuclear interactions.

Results of ⁸He

AMD+GCM calc. for ⁸He

with effective N-N interactions(MV1, Volkov)

Dineutron correlation in 8He

 $|^{8}$ He(0_{2}^{+}

Dominant p3/2 closure with a mixing of dineutron(S=0 pairs) correlations like SU(3)-limit,no spatially development. Weaker than 6He.

consistent with Itagaki et al. PRC78:017306,2008 inconsistent with ? Hagino et al. PRC77:054317,2008.

Breaking of p3/2 neutron shell has been discussed in recent experimental works.

Exp. L.V.Chulkov et al. NPA759,43(2005) 8He(p,pn) N. Keeley et al., PLB646, 222(2007). 8He(p,t)6He F. Skaza, et al. PRC73, 044301(2006). p(8He,d)

possible existence of the second 0+ state.

Spatially developed dineutron clusters =Dineutron gas

No experimental data

Analysis of dineutron correlations

Two-neutron density

Two-body density: $\rho^{(2)}(\mathbf{r}, \mathbf{R}) \equiv \left\langle \sum_{i \neq j} \delta(\hat{\mathbf{r}}_i - \mathbf{r}_1) \delta(\hat{\mathbf{r}}_j - \mathbf{r}_2) \right\rangle$ $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1, \quad \mathbf{R} = (\mathbf{r}_2 + \mathbf{r}_1)/2$

S=0 and S=1 decomposition

$$\rho_{nn}^{(2)}(\mathbf{r},\mathbf{R}) \equiv \left\langle \sum_{i \neq j} \delta(\hat{\mathbf{r}}_{i} - \mathbf{r}_{1}) \delta(\hat{\mathbf{r}}_{j} - \mathbf{r}_{2}) \right\rangle \qquad \mathbf{r} = \mathbf{r}_{2} - \mathbf{r}_{1}, \ \mathbf{R} = \frac{\mathbf{r}_{1} + \mathbf{r}_{2}}{2}$$
$$= \rho_{nn,S=0}^{(2)}(\mathbf{r},\mathbf{R}) + \rho_{nn,S=1}^{(2)}(\mathbf{r},\mathbf{R})$$
$$\equiv \left\langle \sum_{i \neq j} P(S_{ij} = 0) \delta(\hat{\mathbf{r}}_{i} - \mathbf{r}_{1}) \delta(\hat{\mathbf{r}}_{j} - \mathbf{r}_{2}) \right\rangle + \left\langle \sum_{i \neq j} P(S_{ij} = 1) \delta(\hat{\mathbf{r}}_{i} - \mathbf{r}_{1}) \delta(\hat{\mathbf{r}}_{j} - \mathbf{r}_{2}) \right\rangle$$

Average of angles

$$\rho^{(2)}(r,R) \equiv \iint d\Omega_r d\Omega_R \rho^{(2)}(\mathbf{r},\mathbf{R})$$

Comparison with other nuclei

$$\rho_{nn,S=0}^{(2)}(r=0,R)$$
 v.s. $(\rho_{nn,S=0}^{(1)}(r=0,R))^2$

MV1(m=0.56,b=h=0.15)

Dineutron correlation in N=6 nuclei (preliminary)

V2(m=0.60,b=h=0.125)

Dineutron correlation can be discussed in two-neutron density at surface and also in relation with $(p3/2)^4$ component and mixing of $(p3/2)^2$ $(p1/2)^2$

Summary

Dineutron correlation in ⁸He

Structure of He isotopes was studied with AMD+GCM Dineutron structure in ⁸He was analyzed

Results:

- Dineutron correlation in ⁸He(g.s.) but weaker than ⁶He(g.s.)
- Possible existence of ${}^{8}\text{He}(0_{2}+)$:

 α +2n+2n structure, dineutron gas ?

Future problems:

Width of excited states. Effective nuclear force.

Analysis of dineutron correlations: two-neutron density can be a good probe.
Comparison of 2n density with squared 1n density
6He and 8He show an enhancement of 2n density at surface region(R>4).

Future: We are now developing a new framework (extension of AMD) to investigate dineutron correlations. F. Kobayashi's poster yesterday.