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-ssential Points

. Similarity renormalization group (SRG)

II.SRG transformation in many-body medium
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Decoupling of ground states

Non perturbativeness

* Size-extensivity
% (Potential applicability to Vefr/Oefr)
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One obstacle to extending such calculations to heavier nuclei

=> Strong coupling between low- and high-momentum states induced by
the short-distance details of typical two- and three-nucleon interactions,
from low-energy scattering data and deuteron.



Understanding nuclei from RG perspective

Nuclear Hamiltonian is "resolution™ dependent
HAN) =T +V3IA)+VE(A)--.
Relevant details of high-energy physics ==> A-dependent coefficients of
operators in a low-energy Hamiltonian.
Decoupling of high momentum d.o.f. can be achieved by lowering the

‘resolution scale” , or A, down to typical nuclear structure momentum
scale. ==> Necessary d.o.f. for low-energy observables.
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4 Greatly simplify the nuclear many-body problems, making those

calculations converge rapidly.

4 Varying A provides a powerful tool to assess theoretical errors due to
truncation in Hamiltonian and many-body approximations.
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RG and many-body interactions

So far, the SRG to NN(N) have been applied in free space to construct NN and/
or NNN interactions to be used as input for ab initio calculations (NCSM).
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Accelerated convergence, but A-dependent results
Many-body forces are induced and do affect observables

H(s)=U(s)HPUT(s) = H?(s) + H® (s) + - - -
Free-space SRG needs the consistent evolution of 3N or higher interactions

SRG transformation directly in many-body system
#*Normal-ordering w.r.t. a reference state, and truncate at a finite order.

#*One can approximately evolve 3-body, ..A-body operators within 2b

machinery.
K.T. S. Bogner and A. Schwenk, to be submitted
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Truncating the flow equation up to normal-ordered 2-body operators may
approximately evolve induced 3-body and higher-body interactions through
density- dependent coefficients.
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What we drive a Hamiltonian toward

We define what Is suppressed in the flow
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- Hamiltonians using nn ! and n 'are unitary equivalent if no truncation is made.

- Any discrepancies in energy eigenvalues provides a measure of the truncation
errors from the neglected 3-body or higher-body operators.



Decoupling of Hilbert space

Solving the flow equation for normal-ordered operators

W) o), ()

builds up correlations in pp, hh and ph channels to all order in bare couplings

At the end of the flow
H(00) = Eg(o0) + f¥(c0) 4+ I'*(0).

The reference state |®) becomes the ground state of H(w) with Eo(w)
The |®) is decoupled from the rest of the Hilbert space

QH(c0)P =0, PH(c0)Q =0
P=|9)(® andQ =1 %) (@

«,*  Effective Hamiltonians (and operators) |
1 ‘
o ® [ for open-shell systems ‘;
-------------------------- . = — — = _ — == — — — e ——
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In-medium SRG
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Non-Perturbativeness of IM-SRG: Schematic

The flow equation can essentially be seen as

[ [n+1]= >< + +
[ [n]

With the initial condition

[ [O]= X =: V(bare two-body coupling)
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. >< N N % Solving the flow equation step by step
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, : : Correlations to all order
r (2] . ! Ov?) 3
) : (IM-SRG(2) is 3rd-oder exact)

-----------------------
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Exact diagonalization

+The IM-SRG(2) for both generators are in good agreement with the CCSD(T)
+The n' and n' results agree to within 20 keV of each other.
+Essentially converged emax=8 results falls within 20 keV of the exact NCSM.

Truncation to normal-ordered two-body interaction is a controlled approximation.




Suppression of Hed(s)

n -evolution of the matrix elements [ JZapcd(s) at three different steps in s.

160, Viowk A=1.8fm™' from N3LO(500MeV)

10 20 30

The off-diagonal couplings in the initial Hamiltonian are rapidly driven to zero

Perturbative many-body approximations become more effective in SRG
evolution well before the the complete decoupling.



Non-perturbativeness

Many-body methods with the flowing Hamiltonian H(s)
H(O)=T+V-Tcm, V=Vsrg A=2.0 fm-! from N3LO(500MeV)

| I [ | I TTT | I T TT |||| I T TTT |
_ i — IM-SRG(2), E (s)
oo . -
% - — MBPT(2) with H(s)
S I .—- MBPT(3) with H(s)| |
: CCSD with H(s) |
80 | o—a CCSD(T) with H(s)| |
5 -24 -
QC“) 5 i
8 -l - “He, hw=24MeV
Z2 | S 1
S =26 —
g L
=
8 =B O B D At ==
O 73 : ——————— exact diagonalization of H(0)
| | ||||||| | | ||||||| | | ||||||| | | ||||||| | | ||||||| |
10" 10° 10” 10™ 10~ 10~

Flow parameter s [MeV ]

“*With the initial Hamiltonian, MBPT breaks down. [The 2nd order happens to be nice
<+ With increasing s, MBPT become small. BUT the 3rd order goes bad.

+ All many-body methods approach the exact results, where the transformed
Hamiltonian can be diagonalized by the simplest state.
*Almost s-independent CCSD(T) ==> IM-SRG(2) is controllable approximation.
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Size-extensibity: Numerically manifested
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a) °0
generator I1

. Viowk smooth, A=1.8fm""
. from N3LO(500MeV) 4

b) “’Ca
generator 11

Vsrg A=1.8fm-!
from N3LO(500MeV)

“+ The calculations for 60, 49Ca are well
-converged and very good quality,

<+ Falling between CCSD and CCSD(T)

+|M-SRG can be used for medium-
mass nuclel, probably heavier ones
as well.
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summary
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Work in Progress
[J Application to heavier system ==> frontier of ab-initio method

[ Derivation of effective operator/Hamiltonian for open-shell systems.
[] effective interaction for valence shell nucleons. <= ready for p sd-shell!
[] effective charge ==> B(E2) for C, Ca, Ni and Sn. %y g
[J guenching factor for GT transition, '
) charge/matter radii

[ An Initial 3NF ==> Impact of 3NF in medium, neutron rlchnuclel T
<= start with normal-ordered 3NF
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