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Essential Points

I. Similarity renormalization group (SRG)

II.SRG transformation in many-body medium
✤ Decoupling of ground states 
✤ Non perturbativeness
✤ Size-extensivity 
✤ (Potential applicability to Veff/Oeff)



Nuclei From Scratch
Description of nuclei  from nucleonic degrees of freedom (ab initio).
Binding-energy systematics
Low-lying excitations and spectroscopy
Collective excitations with Large- or small amplitude
Phenomena at the extreme conditions (T, J, N/Z ...)
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One obstacle to extending such calculations to heavier nuclei

=> Strong coupling between low- and high-momentum states induced by 
the short-distance details of typical two- and three-nucleon interactions, 
from low-energy scattering data and deuteron.



Understanding nuclei from RG perspective 
Nuclear Hamiltonian is ”resolution” dependent

H(Λ) = T + V
(2)(Λ) + V

(3)(Λ) · · ·
Relevant details of high-energy physics ==> Λ-dependent coefficients of 
operators in a low-energy Hamiltonian.
Decoupling of high momentum d.o.f. can be achieved by lowering the 
“resolution scale” , or Λ, down to typical nuclear structure momentum 
scale.  ==> Necessary  d.o.f. for low-energy observables. 
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in Λ and (b) SRG running in λ. At each
Λi or λi , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in Λ
and (b) SRG running in λ (see Fig. 27 for plots in k2, which show the diagonal width of order λ2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoffΛ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff λ (in energy differences λ2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
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Understanding nuclei from RG perspective 
Nuclear Hamiltonian is ”resolution” dependent

H(Λ) = T + V
(2)(Λ) + V

(3)(Λ) · · ·
Relevant details of high-energy physics ==> Λ-dependent coefficients of 
operators in a low-energy Hamiltonian.
Decoupling of high momentum d.o.f. can be achieved by lowering the 
“resolution scale” , or Λ, down to typical nuclear structure momentum 
scale.  ==> Necessary  d.o.f. for low-energy observables. 

✦Greatly simplify the nuclear many-body problems, making those 
calculations converge rapidly.
✦ Varying Λ provides a powerful tool to assess theoretical errors due to 
truncation in Hamiltonian and many-body approximations. 
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lower λ

H
d(s) = T

Bogner et al, PRC75, 061001(R) (2007)
with block-diagonal flow operator Bogner et al. (2008)

low-momentum blocks very similar to Vlow k

formal equivalence?

SRG is exact at second-order

in the (tree-level) potential

SRG connections to EFT?

Block diagonalization using SRG

Vlow k

H
d(s) =

�
PH(s)P 0

0 QH(s)Q

�

Anderson et al, PRC77, 037001 (2008)
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choose to evolve in a discrete basis, where there are no
issues with disconnected terms and induced many-body
forces can be directly identified.

Our calculations are performed in the Jacobi coordi-
nate harmonic oscillator (HO) basis of the No-Core Shell
Model (NCSM) [13]. This is a translationally invariant,
anti-symmetric basis for each A, with a complete set of
states up to a maximum excitation of Nmax!Ω above the
minimum energy configuration, where Ω is the harmonic
oscillator parameter. The procedures used here build di-
rectly on Ref. [12], which presents a one-dimensional im-
plementation of our approach along with a general anal-
ysis of the evolving many-body hierarchy.

We start by evolving Hλ in the A = 2 subsystem, which

completely fixes the two-body matrix elements 〈V (2)
λ 〉.

Next, by evolving Hλ in the A = 3 subsystem we deter-
mine the combined two-plus-three-body matrix elements.
We can isolate the three-body matrix elements by sub-

tracting the evolved 〈V (2)
λ 〉 elements in the A = 3 ba-

sis [12]. Having obtained the separate NN and NNN ma-
trix elements, we can apply them to any nucleus. We are
also free to include any initial three-nucleon force in the
initial Hamiltonian without changing the procedure. If
applied to A ≥ 4, four-body (and higher) forces will not
be included and so the transformations will be only ap-
proximately unitary. The questions to be addressed are
whether the decreasing hierarchy of many-body forces is
maintained and whether the induced four-body contri-
bution is unnaturally large. We summarize in Table I
the different calculations to be made for 3H and 4He to
confront these questions.

The initial (λ = ∞) NN potential used here is the
500MeV N3LO interaction from Ref. [14]. The initial
NNN potential is the N2LO interaction [15] in the local
form of Ref. [16] with constants fit to the average of tri-
ton and 3He binding energies and to triton beta decay
according to Ref. [17]. We expect similar results from
other initial interactions because the SRG drives them
toward near universal form; a survey will be given in
Ref. [18]. NCSM calculations with these initial interac-
tions and the parameter set in Table I of Ref. [17] yield
energies of −8.473(4)MeV for 3H and −28.50(2)MeV for
4He compared with −8.482 MeV and −28.296 MeV from
experiment, respectively. So there is a 20 keV uncertainty
in the calculation of 4He from incomplete convergence
and a 200keV discrepancy with experiment. The latter
is consistent with the omission of three- and four-body
chiral interactions at N3LO. These provide a scale for
assessing whether induced four-body contributions are
important compared to other uncertainties.

In Fig. 1, the ground-state energy of the triton is plot-
ted as a function of the flow parameter λ. Evolution is
from λ = ∞, which is the initial (or “bare”) interaction,
toward λ = 0. We use Nmax = 36 and !Ω = 28 MeV, for
which all energies are converged to better than 10 keV.
We first consider an NN interaction with no initial NNN
(“NN-only”). If Hλ is evolved only in an A = 2 sys-
tem, higher-body induced pieces are lost. The resulting
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FIG. 1: (Color online) Ground-state energy of 3H as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.
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energy calculations will only be approximately unitary
for A > 2 and the ground-state energy will vary with λ
(squares). Keeping the induced NNN yields a flat line
(circles), which implies an exactly unitary transforma-
tion; the line is equally flat if an initial NNN is included
(diamonds). Note that the net induced three-body is
comparable to the initial NNN contribution and thus is
of natural size.

In Fig. 2, we examine the SRG evolution in λ for 4He

with !Ω = 36 MeV. The 〈V (2)
λ 〉 and 〈V (3)

λ 〉 matrix ele-
ments were evolved in A = 2 and A = 3 with Nmax = 28

Free-space SRG needs the consistent evolution of 3N or higher interactions

Jurgeson, Furnstahl and Navratil Phys Rev. Lett. 103, 082501(2009)Accelerated convergence, but λ-dependent results



So far, the SRG to NN(N) have been applied in free space to construct  NN and/
or NNN interactions to be used as input for ab initio calculations (NCSM).

RG and many-body interactions

H(s) = U(s)H(2)
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†(s) = H̃
(2)(s) + H̃

(3)(s) + · · ·

Many-body forces are induced and do affect observables

SRG transformation directly in many-body system
Normal-ordering w.r.t. a reference state, and truncate at a finite order. 
One can approximately evolve 3-body, ..A-body operators within 2b 
machinery.

K.T. S. Bogner and A. Schwenk, to be submitted
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nomenclature of the curves.
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FIG. 2: (Color online) Ground-state energy of 4He as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.

energy calculations will only be approximately unitary
for A > 2 and the ground-state energy will vary with λ
(squares). Keeping the induced NNN yields a flat line
(circles), which implies an exactly unitary transforma-
tion; the line is equally flat if an initial NNN is included
(diamonds). Note that the net induced three-body is
comparable to the initial NNN contribution and thus is
of natural size.

In Fig. 2, we examine the SRG evolution in λ for 4He

with !Ω = 36 MeV. The 〈V (2)
λ 〉 and 〈V (3)

λ 〉 matrix ele-
ments were evolved in A = 2 and A = 3 with Nmax = 28

Free-space SRG needs the consistent evolution of 3N or higher interactions

Jurgeson, Furnstahl and Navratil Phys Rev. Lett. 103, 082501(2009)Accelerated convergence, but λ-dependent results
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ni ≡ θ(�F − �i)
zero- one- two-body terms include 
contributions from 3N, 4N.. forces 
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Starting with a general Hamiltonian

Truncating the flow equation up to normal-ordered 2-body operators may 
approximately evolve induced 3-body and higher-body interactions through 
density- dependent coefficients.
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What we drive a Hamiltonian toward
We define what is suppressed in the flow
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•Hamiltonians using ηⅠ and ηⅡare unitary equivalent if no truncation is made.
•Any discrepancies in energy eigenvalues provides a measure of the truncation 
errors from the neglected 3-body or higher-body operators.
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Decoupling of Hilbert space

H(∞) = E0(∞) + f
d(∞) + Γd(∞).

dH(s)
ds

= [η(s),H(s)]

Solving the flow equation for normal-ordered operators

builds up correlations in pp, hh and ph channels to all order in bare couplings

At the end of the flow

The reference state |Φ〉becomes the ground state of H(∞) with E0(∞)
The |Φ〉 is decoupled from the rest of the Hilbert space

In-medium SRG
Ground-state energy

Effective Hamiltonians (and operators)
for open-shell systems

QH(∞)P = 0, PH(∞)Q = 0

andP = |Φ� �Φ| Q = 1 − |Φ� �Φ|



In-medium SRG(2) Flow Equation

•The commutator form ==> no unlinked diagrams 
==> size-extensive, with truncation errors scaling linearly with A.

•SRG is intrinsically non-perturbative. 
•Modest scaling of computational efforts ==> suitable for medium-mass nuclei
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Non-Perturbativeness of IM-SRG: Schematic

Γ[n+1]=

Γ[n]

+ +

The flow equation can essentially be seen as

With the initial condition

=: V(bare two-body coupling)Γ[0]=
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Γ[1]=

V

+ + Solving the flow equation step by step

Correlations to all order

+ + + +

O(V 3)

Γ[2]= + +
O(V 2)

+ + + + +...

O(V 4)

(IM-SRG(2) is 3rd-oder exact)



Exact diagonalization 

Ground-State Energy of 4He

✤The IM-SRG(2) for both generators are in good agreement with the CCSD(T)
✤The ηI  and ηII   results agree to within 20 keV of each other.
✤Essentially converged emax=8 results falls within 20 keV of the exact NCSM.

Truncation to normal-ordered two-body interaction is a controlled approximation.

Vsrg λ=2.0 fm-1 from N3LO(500MeV)



Suppression of Hod(s)

 s=0 MeV  s=10  MeV  s=10  MeV

hh

hh

pp

pp

hh hhpp pp

-3 -1-2-2 -2

ηI-evolution of the matrix elements ΓJTzabcd(s) at three different steps in s.

The off-diagonal couplings in the initial Hamiltonian are rapidly driven to zero

Perturbative many-body approximations become more effective in SRG 
evolution well before the the complete decoupling.

16O, Vlow-k Λ=1.8fm-1 from N3LO(500MeV)



Non-perturbativeness
Many-body methods with the flowing Hamiltonian H(s)

✤With the initial Hamiltonian, MBPT breaks down.
✤With increasing s, MBPT become small.
✤All many-body methods approach the exact results, where the transformed 
Hamiltonian can be diagonalized by the simplest state.

✤Almost s-independent CCSD(T) ==> IM-SRG(2) is controllable approximation. 

The 2nd order happens to be nice 
BUT the 3rd order goes bad. 

H(0)=T+V-TCM,  V=Vsrg λ=2.0 fm-1 from N3LO(500MeV)

4He, hω=24MeV



Size-extensibity: Numerically manifested

✤The calculations for 16O, 40Ca are well 
-converged and very good quality,

✤Falling between CCSD and CCSD(T)
✤ IM-SRG can be used for medium-
mass nuclei, probably heavier ones 
as well.

Vsrg λ=1.8 fm-1 
from N3LO(500MeV)

Vlow-k smooth, Λ=1.8fm-1 
from N3LO(500MeV)



Summary and Outlook

We introduced SRG evolution of Hamiltonian in many-body medium (IM-SRG).
The flow equation is derived for finite system in M- and J-scheme 
representation. 
We numerically demonstrated the features of in-medium SRG
Decoupling of the ground state. 
Size-extensivity
Non-perturbative
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Decoupling of the ground state. 
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Summary

Application to heavier system ==> frontier of ab-initio method
Derivation of effective operator/Hamiltonian for open-shell systems.
effective interaction for valence shell nucleons.
effective charge ==> B(E2) for C, Ca, Ni and Sn.
quenching factor for GT transition,  
charge/matter radii

An Initial 3NF ==> Impact of 3NF in medium, neutron-rich nuclei.

dO(s)
ds

= [η(s),O(s)],

<= ready for p-, sd-shell!

<= start with normal-ordered 3NF

Work in Progress
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