Microscopic description of large-amplitude shape dynamics in neutron-rich Mg isotopes

Nobuo Hinohara

RIKEN Nishina Center

Kenichi Yoshida (RIKEN) Koichi Sato (Kyoto Univ. / RIKEN) Takashi Nakatsukasa (RIKEN) Masayuki Matsuo (Niigata Univ.) Kenichi Matsuyanagi (RIKEN/YITP,Kyoto Univ.)

Jun. 17, 2010

Second EMMI-EFES Workshop on Neutron-Rich Nuclei

Yamagami and Giai PRC69, 034301(2004)

Deformation around N=20

Beyond small-amplitude vib. of mean-field

Potential energy surfaces around ³²Mg are soft against deformation

Quantum correlation beyond mean-field (HFB) + small-amplitude vibration (QRPA) plays essential role in low-lying states (large-amplitude collective motion)

Microscopic theories of LACM

Boson expansion method / Self-consistent Collective Coordinate method

Generator coordinate method (configuration mixing)

□ Adiabatic TDHFB theories (collective Hamiltonian)

Five-dimensional quadrupole collective Hamiltonian

quadrupole amplitudes: $\alpha_{2\mu} \leftrightarrow \beta, \gamma, \Omega = (\phi, \theta, \Psi)$

$$\begin{aligned} \mathcal{H}_{\rm coll} &= \overline{V(\beta,\gamma)} + T_{\rm vib} + T_{\rm rot} \\ T_{\rm vib} &= \frac{1}{2} \overline{D_{\beta\beta}(\beta,\gamma)} \dot{\beta}^2 + \overline{D_{\beta\gamma}(\beta,\gamma)} \dot{\beta} \dot{\gamma} + \frac{1}{2} \overline{D_{\gamma\gamma}(\beta,\gamma)} \dot{\gamma}^2 \\ T_{\rm rot} &= \frac{1}{2} \sum_{k=1}^{3} \overline{\mathcal{J}_k(\beta,\gamma)} \omega_k^2 \qquad \begin{array}{c} \mathbf{V}(\beta,\gamma) & \text{collective potential} \\ \mathbf{D}(\beta,\gamma) & \text{vibrational collective mass} \\ \mathbf{J}(\beta,\gamma) & \text{rotational moment of inertial} \end{array}$$

Classical Hamiltonian for adiabatic quadrupole collective motion
Small-amplitude limit: surface vib. collective rotation, β-vib., γ-vib. γ-unstable ...

Requantization of collective Hamiltonian

Boundary conditions:

Kumar and Baranger NPA92 608 (1967)

Excitation energies, collective wave functions, quadrupole moments, E2 transitions ...

Microscopic derivations of functions in collective Hamiltonian

Microscopic theory of large-amplitude collective motion "Adiabatic self-consistent collective coordinate (ASCC) method"

Comparison with other 5D Hamiltonian approaches

	Potential energy correction (GOA)	vibrational collective mass	rotational moment of inertia	effective interaction
CHFB		LQRPA	LQRPA	P+Q
+		(Thouless-Valatin)	(Thouless-Valatin)	with
LQRPA				quadrupole pairing
RMF	vib. + rot. ZPE	Inglis-Belyaev	Inglis-Belyaev	RMF+BCS
group	(IB)		(Scaled)	(PC-F1)
Skyrme		Inglis-Belyaev	Inglis-Belyaev	Skyrme +
group			(Scaled)	const. G pairing
Gogny	vib. + rot. ZPE	Inglis-Belyaev	Thouless-Valatin	Gogny D1S
group	(IB)		(cranked field)	

RMF group: Li et al., Phys.Rev.C81, 034316 (2010)
Gogny group: Delaroche et al., Phys. Rev. C81, 014303 (2010)
Skyrme group: Próchniak et al., J.Phys.G36,123101 (2009)

Inglis-Belyaev inertia does not consider the effect of time-odd component of mean-field

Calculation Details

Nuclei calculated

^{30,32,34}Mg (N = 18, 20, 22, Z = 12)

Microscopic Hamiltonian (Pairing + Quadrupole Model)

Single-particle energy + pairing (Monopole, Quadrupole)

+ quadrupole (p-h) force

□ <u>Single-particle model space</u>

d5/2

-13.5

harmonic oscillator two major shells (sd + pf shells)

f5/2

3.8

Parameters

d3/2

-5.9

s1/2

-9.8

□ single-particle energies (neutrons and protons)

p3/2

-0.5

SkM* spherical single-particle energy for ³²Mg Yamagami and Giai Phys. Rev. **C69**, 034301 (2004) is used for ³⁰⁻³⁴Mg

p1/2

0.7

Calculation Details

□ <u>Parameters</u>

Interaction strength

neutron and proton monopole pairing

³²Mg: adjusted to reproduce pairing gaps of Yamagami et al.

(SkM*+mixed pairing) at spherical shape ($\Delta_n \sim 0.9$ MeV, $\Delta_p \sim 0.8$ MeV)

^{30,34}Mg: with A⁻¹ dependence

quadrupole p-h interaction strength

³²Mg: adjusted to reproduce experimental 2_1^+ energy after quantization ^{30,34}Mg: with A^{-5/3} dependence

□ quadrupole pairing strength G₂:

□ $G_2 = G_2^{self}$ (self-consistent value) Sakamoto et al. PLB245 (1990) 321 □ Effective charges

 \Box e_n = 0.8, e_p = 1.8 (adjusted to experimental B(E2;2 \rightarrow 0) in ³²Mg)

Collective potentials V(β , γ), neutron pairing gap $\Delta_n(\beta,\gamma)$

D prolate minima are found in all three nuclei

Δ ³⁰Mg: extremely soft in β direction

- □ ³²Mg: spherical and prolate shape coexistence
- \square ³⁴Mg: soft in γ dirction

Inertial functions (mass $D_{\beta\beta}(\beta,\gamma)$ / Mol $J_1(\beta,\gamma)$)

Ground bands

³⁴Mg: Yoneda et al. PLB499 (2001) 233

 $M_n/M_p / (N/Z)$

	³⁰ Mg	³² Mg	³⁴ Mg	
2+→0+	0.789	0.815	0.807	
	0.84(15)			

EXP, Takeuchi et al.

B(E2)₃₀Mg: Niedermaier et al. PRL**94** (2005) 172501 ³²Mg: Motobayashi et al. PLB**346** (1995) 9 ³⁴Mg: Iwasaki et al. PLB**522** (2001) 227.

Energy spectra

Shape mixing properties

$B(E2;2_1^+ \rightarrow 0_2^+) > B(E2;2_1^+ \rightarrow 0_1^+)$

 □ shape change in ground band (spherical → prolate)
□ shape mixing in 0⁺, 2⁺ states

- We have analyzed the low-lying states of ^{30,32,34}Mg isotopes using the 5D quadrupole collective Hamiltonian constructed with the CHFB + LQRPA method.
- Properties of the ground band (excitation energies, B(E2)) are well reproduced within one adjustable parameter in the model (and effective charges).
- Shape mixing properties are analyzed. Strong shape mixing is expected in 0⁺ and 2⁺ state of ³⁰Mg.