Nuclear Energy Density Functionals

Dario Vretenar University of Zagreb

Energy Density Functionals

Nuclear Energy Density Functionals: the many-body problem is mapped onto a one body problem without explicitly involving inter-nucleon interactions!

Self-consistent Kohn-Sham DFT: includes correlations and therefore goes beyond the Hartree-Fock. It has the advantage of being a **local scheme**.

$$v_s[\rho(\mathbf{r})] = v(\mathbf{r}) + U[\rho(\mathbf{r})] + v_{xc}[\rho(\mathbf{r})]$$

external potentialHartree termexchange-correlation $v_{xc}[\rho(\mathbf{r})] = \frac{\delta E_{xc}[\rho(\mathbf{r})]}{\delta \rho(\mathbf{r})}$

The practical usefulness of the Kohn-Sham scheme depends entirely on whether accurate approximations for E_{xc} can be found!

... accurate and controlled approximations for the nuclear exchange-correlation energy functional

... microscopic foundation for a universal EDF framework, related to and constrained by low-energy QCD

... extensions that include non-nucleonic degrees of freedom

... correlations related to restoration of broken symmetries and fluctuations of collective coordinates

Exchange-correlation functional:

The true E_{xc} is a universal functional of the density: it has the same functional form for all systems.

...vary smoothly with nucleon number! Can be included implicitly in an effective Energy Density Functional. A **microscopic nuclear energy density functional** must start from the relevant active degrees of freedom at low energy:

PIONS & NUCLEONS

Effective Field Theory of low-energy in-medium NN interactions \Rightarrow approximations to **the exact exchange-correlation functional.**

relevant scale: Fermi momentum

$$k_f \approx 2m_\pi << 4\pi f_\pi$$

The density functional involves an expansion of nucleon self-energies in **powers of the Fermi momentum.**

Inclusion of the $\Delta(1232)$ degree of freedom:

 $M_{\Delta} - M_N \approx k_f \approx 2m_{\pi}$

Two-pion exchange diagrams with single and double $\Delta(1232)$ excitations:

Model for Finite Nuclei

P. Finelli, N. Kaiser, D. Vretenar, W. Weise, Nucl. Phys. A 735 (2004) 449, A 770 (2006) 1.

... universal exchange-correlation functional $E_{xc}[\rho]$

Ist step: Local Density Approximation

$$E_{xc}^{LDA} \equiv \int \varepsilon^{ChPT} [\rho(\mathbf{r})] \rho(\mathbf{r}) d^3 r$$

2nd step: second-order gradient correction to the LDA

ChPT calculations for inhomogeneous nuclear matter:

$$\mathcal{E}(\rho, \nabla \rho) = \rho \overline{E}(k_f) + (\nabla \rho)^2 F_{\nabla}(k_f) + \dots$$

Charge form factors of ⁴⁸Ca, ⁹⁰Zr and ²⁰⁸Pb calculated with the FKVW functional, in comparison with the experimental form factors.

CHIRAL EFT provides a consistent microscopic framework for the isoscalar and isovector channels of a **universal nuclear energy density functional**.

Hypernuclear single particle spectra based on in-medium chiral SU(3) dynamics

P. Finelli, N. Kaiser, D. Vretenar, W. Weise, Nucl. Phys. A 831 (2009) 163.

Hypernuclear energy density functional:

$$E[\rho] = E^{N}[\rho] + E^{\Lambda}_{\text{free}}[\rho] + E^{\Lambda}_{\text{int}}[\rho]$$

hypernuclear ground state

$$E_{\rm free}^{\Lambda} = \int d^3 r \langle \Phi_0 | \bar{\psi}_{\Lambda} [-i \boldsymbol{\gamma} \cdot \boldsymbol{\nabla} + M_{\Lambda}] \psi_{\Lambda} | \Phi_0 \rangle$$

coupling to the scalar nucleon density

$$E_{\rm int}^{\Lambda} = \int d^3r \left\{ \underbrace{\Phi_0 | G_S^{\Lambda}(\rho) \left(\bar{\psi} \psi \right) \left(\bar{\psi}_{\Lambda} \psi_{\Lambda} \right) | \Phi_0 \right)}_{+ \langle \Phi_0 | G_V^{\Lambda}(\rho) \left(\bar{\psi} \gamma_{\mu} \psi \right) \left(\bar{\psi}_{\Lambda} \gamma^{\mu} \psi_{\Lambda} \right) | \Phi_0 \rangle} \right. \\ \left. + \langle \Phi_0 | D_S^{\Lambda} \partial_{\mu} (\bar{\psi} \psi) \partial^{\mu} (\bar{\psi}_{\Lambda} \psi_{\Lambda}) | \Phi_0 \rangle \right\}$$
coupling to the vector nucleon density

derivative term - from a gradient expansion of the EDF

Binding energies of the Λ in different s, p,... orbitals of six hypernuclei:

Collective correlations: restoration of broken symmetries and fluctuations of collective variables

Nikšić, Vretenar, Ring Phys. Rev. C **73**, 034308 (2006) Phys. Rev. C **74**, 064309 (2006)

- 1. Mean-field calculations, with a constraint on the quadrupole moment.
- 2. Angular-momentum and particle-number projection.
- 3. Generator Coordinate Method ⇒ configuration mixing

... larger variational space for projected GCM calculations!

Five-dimensional collective Hamiltonian

Nikšić, Li, Vretenar, Prochniak, Meng, Ring, Phys. Rev. C 79, 034303 (2009)

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom

$$\begin{aligned} H_{\rm coll} &= \mathcal{T}_{\rm vib}(\beta,\gamma) + \mathcal{T}_{\rm rot}(\beta,\gamma,\Omega) + \mathcal{V}_{\rm coll}(\beta,\gamma) \\ \mathcal{T}_{\rm vib} &= \frac{1}{2} B_{\beta\beta} \dot{\beta}^2 + \beta B_{\beta\gamma} \dot{\beta} \dot{\gamma} + \frac{1}{2} \beta^2 B_{\gamma\gamma} \dot{\gamma}^2 \\ \mathcal{T}_{\rm rot} &= \frac{1}{2} \sum_{k=1}^3 \mathcal{I}_k \omega_k^2 \end{aligned}$$

Li, Nikšić, Vretenar, Meng, Lalazissis, Ring, Phys. Rev. C 79, 054301 (2009)

EDF description of nuclear Quantum Phase Transitions

Nikšić, Vretenar, Lalazissis, Ring, Phys. Rev. Lett. **99**, 092502 (2007)

... detailed spectroscopy in the EDF framework!

TU München P. Ring N. Kaiser W. Weise

Uni Zagreb T. Nikšić N. Paar Yifei Niu T. Marketin

Uni Bologna P. Ginelli

Uni Thessaloniki G.A. Calazissis

Peking Uni J. Meng Zhipan Li