

Marco Schippers, Paul Scherrer Institut, Villigen

Developments in Particle Therapy using Nuclear Science and Technology

Helsinki, NUSPRASEN workshop, November 26, 2019

OUTLINE

- Proton Therapy
- Recent developments in dose delivery and p.th.-accelerators
- Current major topics of research:

 Treatment when organs are moving
 High intensity
 Proton range determination

Why Particle therapy?

X-ray beams from 7 directions

Proton beams

from 3 directions

pictures: Medaustron

Proton therapy facility

Accelerators for Proton therapy

Cyclotron

Synchrotron

Recent Developments in dose delivery and accelerators

Dose delivery techniques

compact "Gantry-1" at PSI (1996)

NUSPRASEN-workshop

Typical Gantry ~1996...

Schär Engineering - Munich

Roberts Proton Therapy Center

Philladelphia

NUSPRASEN-workshop

NEW: gantries with SC magnets

NUSPRASEN-workshop

NEW: optics in SC gantry design

NUSPRASEN-workshop

PAUL SCHERRER INSTITUT

NIRS: Y. Iwata et al., MOPEA008, Proc. IPAC'10

cyclotrons in proton therapy

IBA (1996) , SHI Isochronous Cyclotron

In Production: Linac 230 MeV

Spin-off from TERA and CERN:

Coupled Cavity Linac →230 MeV

E-change by: switching on/off power of cavity units

AVO, ADAM: A. Degiovanni et al. 2016

NUSPRASEN-workshop

NUSPRASEN-workshop

PAUL SCHERRER INSTITUT

Treatment with moving organs High intensity + verification Range determination

organ / tumor motion

Possible solutions:

Organ motion

Fast pencil beam scanning

High intensity:

- Reduces motion problems
- FLASH irradiation: 0.03 Gy/s → 40 Gy/s

To be modified:

- Source / accelerator / beam transport
- How to verify?

scanning beam monitor

Sjirk Boon (1996), Enrica Seravalli (2003)

NUSPRASEN-workshop

Current major topics of research

Particle range in tissue

Particle beams are sensitive to

- \circ CT Hounsfield number \rightarrow Stopping Power accuracy
- Organ motion
- Change of patient's anatomy

→ Uncertainty in range in patients ~3%
 but impossible to measure range directly
 > Verious methods are inclused as a second s

Proton range in tissue

Effect of: 3 cm bone DOSE

Effect of: CT

 \rightarrow Range error from CT calibr ~1%

CT - Hounsfield nr

protons:

~ 2cm

DEPTH

Real Tissue Tissue Substitute

Calibration Curve

Range measurements

CURRENT STATUS:

- Need to know tissue constituents and predict PET signal
- Compare measured signal with prediction
- Accuracy ~3mm
- but new developments are coming......

Range measurements

Proton radiography

NUSPRASEN-workshop

Conclusions

What developments are needed and where can Nuclear Technology contribute?

- Lower price (50%)
- Faster (x ...100)
- Motion detect., imaging
- Range detection

- \leftarrow (SC) Magnets + Acc.
- ← Acc. + Nucl techn.
- ← Nucl. Techn.
 - ← Nucl. Techn.

But take care when implementing new developments:

- Do not propose a solution looking for a problem
- Proven idea \rightarrow clinic takes 10-20 years
- Long term (>20 yr) commitment: service / upgrades...

Thank you for your attention

