# Application for testing CBM detectors in beam at COSY in Q4/2019

- Recent tests: (1) in mCBM (3/2019) (2) at COSY (4/2019)
- Beamtime application at COSY for Q4/2019
- Preview of medium-term plans at COSY 2020 2022







# (1) Tests in mCBM@SIS18, 12/2018 and 3/2019



mCBM@SIS18 - a CBM full system test-setup for high-rate nucleus-nucleus collisions at GSI/FAIR



- first successful commissioning with beam 12/2018 and 3/2019
- CBM prototype detector systems
- free-streaming read-out and data transport to the mFLES
- up to 10 MHz collision rate
- online monitoring
- event reconstruction and selection offline now, on-line next



# mCBM@SIS18 – combined data taking



March 30, 2019: beam intensity  $\approx 10^8$  Ag ions / s interaction rates  $10^6$  ...  $10^7$  / s (preliminary)

March 30, 2019 – run 175 (approx.)  $10^8$  Ag ions/s (1.58 GeV/u) + Au (2.5 mm)



# mSTS demonstrator

#### mSTS – demonstration of:

- C-frame and ladder mounting mechanics
- module and ladder assembly
- LV + HV powering
- liquid cooling of electronics (water)
- module performance, data streaming

no sensor cooling, operation at "room" temperature



station #0: C-frames #0 and #1



# mSTS demonstrator

#### mSTS – demonstration of:

- C-frame and ladder mounting mechanics
- module and ladder assembly
- LV + HV powering
- liquid cooling of electronics (water)
- module performance, data streaming

no sensor cooling, operation at ``room'' temperature



station #0: C-frames #0 and #1



# mSTS achievements and findings

# **Achievements**

## module assembly

• first full-size modules assembled

## ladder assembly

first half-ladders assembled

# system integration

- C-frame assembly
- cooling plates
- powering and read-out electronics
- ladder installation
- cabling
- power supplies in "final" cave location

#### read-out

- data links stable
- high-rate read-out achieved

# **Findings**

## module assembly yield

- all tested components used (sensors, microcables, ASICs)
- microcable attachment yield high
- FEB 8 assembly/operation yield too low on the first prototypes
- some modules fading away during (in-beam) operation
  - under systematic study
  - new FEB design, custom designed rad. tolerant LDO, ...

## noise in longest modules too high

- in test box: ≈ 1300 e OK
- in mSTS:  $\approx 3000 \text{ e} \Rightarrow \text{S/N} \approx 8-12$  threshold high
  - under systematic study
  - power supplies, filtering

# mSTS achievements and findings



# **Achievements**

## module assembly

• first full-size modules assembled

## ladder assem

- first half-lad system integral
- C-frame asse
- cooling plate
- powering ar
- ladder instal
- cabling
- power suppl

#### read-out

- data links sta
- high-rate read-out achieved

## approach:

- in-detail check of module components, FEB-8 v2 and assembly procedure
- 2) assembly of new modules
- 3) systematic test in the STS lab
- 4) if successful, carry out inbeam test at COSY: module in reference fiber hodoscope tracking telescope (Q4/2019)

# **Findings**

## module assembly yield

- all tested components used (sensors, microcables, ASICs)
- microcable attachment yield high
- FEB 8 assembly/operation yield



- in test box: ≈ 1300 e OK
- in mSTS:  $\approx 3000 \text{ e} \Rightarrow \text{S/N} \approx 8-12$  threshold high
  - under systematic study
  - power supplies, filtering

# mMUCH demonstrator







~2200 pads, 18 FEBs per chamber



## current issues:

- noise in one chamber
- data synchronization in one chamber
- modification in LV system for upcoming mCBM running

# (2) UFSDs tested at COSY (4/2019) for HADES + CBM@FAIR

#### **Ultra Fast Silicon Detectors:**

A novel technology based on low-gain avalanche diode:

- excellent timing properties, time precision below 100 ps
- well established, cheap, production process
- on-going R&D (ATLAS/CMS)







First FBK Production of  $50\mu\mathrm{m}$  Ultra-Fast Silicon Detectors

V. Sola<sup>a,b,\*</sup>, R. Arcidiacono<sup>c,b</sup>, M. Boscardin<sup>d,e</sup>, N. Cartiglia<sup>b</sup>, G.-F. Dalla Betta<sup>f,e</sup>, F. Ficorella<sup>d,e</sup>, M. Ferrero<sup>a,b</sup>, M. Mandurrino<sup>b</sup>, L. Pancheri<sup>f,e</sup>, G. Paternoster<sup>d,e</sup>, A. Staiano<sup>b</sup>

Sensors delivered from INFN Torino and FBK Trento

NIM A924 (2019) 360-368

# ProjectionY of binx=24 [x=23.0..24.0] Silce\_py\_ol\_TEST\_RefTDC1\_ch9 Entries 15321 Mean 0.2949 Std Dev 0.6884



#### Online results:

- time precision 250 ps / 1.4 = 178 ps
- detailed analysis on-going
- further tests needed with improved detector stabilities



# UFSDs: Further tests at COSY in Q4/2019



#### Goals:

- Study drift velocity map inside drift cell, gas mixture dependency
- Measure spatial resolution of new drift cell geometry (2.5 x 5 mm²)

## Setup:

- HADES Mini Drift Chamber (MDC)
  - <sub>-</sub> 50 x 20 cm<sup>2</sup> active area
  - 2 drift cell layers, each 80 cells
- reference / tracking by Silicon or Diamond detector:
  - 4 channels, 100 μm gap (diamond)
  - 36 pixels, active area: 4.5 x 4.5 mm<sup>2</sup>
  - time precision < 100 ps</p>
  - movable (μm step precision)



**Ultra Fast Silicon Detectors** 





set-up ready



drift time inside a MDC prototypeV1 (5 x 5mm²) drift cell as function of perpendicular distance to sense wire (measured by same setup 2017 @ COSY)

10

# Fault Tolerant Local and Monitoring & Control

# Reasons to develop FTLMC

- SEE's are problematic and can result in serious malfunctions
- ARM produces intellectual property fault tolerant processors:
  - Safety and redundancy:arm7v4 Cortex R5F
  - Vendor that produces such a chip:TI- TMS570
  - Task: Build a control board based on that chip: FTLMC
- Robustness in detector environment



## **Test at COSY 2/2018:**

Cortex-R chip (TI-TMS570)

- exposed directly to beam during 13 hours
- beam: 2 Gev Protons 10⁵ per bunch
- total detected and corrected SEU's:
  - in Bank A: 718, in Bank B: 686
- no unrecoverable errors
- failure registers continuously monitored
- database with error time-stamp
- no errors during beam off times detected

## To be tested at COSY Q4/2019:

new FTLMC board

set-up ready



# Beamtime application at COSY for Q4/2019

Aim: Test CBM detectors equipped with new STS-XYTER v2.1 ASIC – shifted from Q2/2019

In order to exclude any potential risk regarding the qualification of the front-end electronics towards STS-XYTER Production Readiness, carry out further, dedicated test of the detectors:

- STS module in proton beam at COSY, allowing full characterization
- [MUCH GEM chamber better placed in mCBM environment for the DAQ support, power supply study]

#### Further aim:

- refined tests of Ultra Fast Silicon Detectors
- SEE stability tests of Fault Tolerant Local and Monitoring & Control board

Prototypes of the detectors/boards either are ready or will be ready.

One week of beamtime in JESSICA Cave will be sufficient to operate and to test the detectors.

# Beamtime application at COSY for Q4/2019

| Total number of particles and type of beam (p,d,polarization) | Momentum range<br>(MeV/c)  | Intensity or internal reaction rate<br>(particles per second) |                                   |
|---------------------------------------------------------------|----------------------------|---------------------------------------------------------------|-----------------------------------|
|                                                               |                            | minimum needed                                                | maximum useful                    |
| р                                                             | p ~ 3000                   | ~ 104-106                                                     | up to 10 <sup>8</sup>             |
| Experimental area                                             | Safety aspects<br>(if any) | Earliest date of installation                                 | Total beam time<br>(No.of shifts) |
| JESSICA Cave                                                  | None                       | one week at turn<br>of Oct./Nov. 2019<br>(e.g week #45)       | 7 days around the clock           |

Experimental set-up:

to be tested:

(1) STS module, (2) MDC-UFS detector, (3) FTLMC board

- o JESSICA cave
  - test beam table installed
- o additional space in rack room close to the JESSICA door
- "Masaquarium" as control room
- o "Wasaquarium" as control room
- During the tests, access to the cave will be required in order to reconfigure the set-up, days and nights. The participating teams will be of moderate size in personnel.
- Delivery and installation of equipment during the week prior to the beam time could be helpful and efficient for the timely start of using the beam.

# Preview of medium term plans for in-beam tests at COSY

- First (parasitic) heavy-ion beam was delivered to mCBM in March 2019.
- A first production run will take place in Spring 2020.
  - technical tests in November 2019.
- It is planned to extend running of mCBM further.
  - Depending on how future beamtimes beyond 2020 may be realized within the FAIR-Phase 0 activity, CBM subsystem studies before series production of components and modules/sectors might need additional testing places, including COSY, in the foreseeable time 2020 2022.
- Independent of the ongoing preparations for CBM, small test systems comprising new detector developments may be studied at COSY using the close-to-minimum ionizing protons in well focused beam.