Proto60

Simulation

Results

Energy Deposition Asymmetrie

Summary

Proto60 Simulation and Analysis

Christian Hammann

Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn

22.03.2010

Simulation

Results

Energy Deposition Asymmetries

Summary

Proto60

Geometry

- 60 PWO crystals type 6
- APD readout with standard ADCs
- $\bullet\,$ cooled down to $-25\,^{\rm o}{\rm C}$

Measurement at MAMI

- 15 photon energies in the range from $150\,{\rm MeV}$ to $1500\,{\rm MeV}$
- $\bullet\,$ beamspot with maximum diameter of $9\,mm$
- \bullet calibration using cosmic peak at $24.5\,{\rm MeV}$

Proto60

Simulation

Results

- Energy Deposition Asymmetries
- Summary

Simulation

Geometry

- Proto60 geometry has been implemented in PandaROOT (V. Suyam Jothi)
- Geometry includes dead material (alveoles, mylar, ...)
- Geometry is not exact

Simulation Parameters

- Geant4 with 1mm range cut
- 10000 photons for each energy
- $\bullet\,$ electronic noise of $240\,{\rm keV}$
- poisson distribution for photon statistics with mean of 7.2
- \bullet beamspot of $8\,\mathrm{mm}$ square

- Proto60
- Simulation
- Results
- Energy Deposition Asymmetries
- Summary

Energy Depositions

- Energy deposition in central crystal
- Sum over energy depositions in the first ring, second ring, 5x5 matrix or cluster
- \bullet threshold of $1\,{\rm MeV}$
- Energy plotted relative to the photon energy
- Data and simulations have been treated the same way

Simulation

Results

Energy Deposition Asymmetries

Summary

- Proto60
- Simulation
- Results
- Energy Deposition Asymmetries
- Summary

Simulation

Results

Energy Deposition Asymmetries

Summary

Asymmetries

- Asymmetry between crystals left and right of the central crystal
- defined as

 $\frac{right - left}{right + left}$

- Asymmetry between crystals on top of and below the central crystal
- defined as

 $\frac{top-bottom}{top+bottom}$

Simulation

Results

Energy Deposition Asymmetries

Summary

- Proto60
- Simulation
- Results
- Energy Deposition Asymmetries
- Summary

Simulation

Results

Energy Deposition Asymmetries

Summary

- Proto60
- Simulation
- Results
- Energy Deposition Asymmetries
- Summary

Summary

Simulation

- Geant4 does not reproduce the EM-shower as measured with the Proto60
- Differences cannot be explained by a different energy deposition of the muons
- Cuts in Geant have to be tuned

Next Meassurements

- Better defined muon pathlength for the energy calibration
- Careful positioning of the Proto60

Simulation

Results

Energy Deposition Asymmetrie

Summary

HISKP

Central Crystal

- Proto60
- Simulation
- Results
- Energy Deposition Asymmetries
- Summary

- Proto60
- Simulation
- Results
- Energy Deposition Asymmetries
- Summary

HISKP

Second Ring

Simulation

Results

Energy Deposition Asymmetrie

Summary

HISKP

Cluster

Proto60

Simulation

Results

Energy Deposition Asymmetrie

Summary

1000

200

100

Data $E_{\gamma} = 1356 \,\mathrm{MeV}$

Eneray/

Fits

 $\begin{array}{l} \mathsf{G4+noise+beamspot}\\ E_{\gamma}=187\,\mathrm{MeV} \end{array}$

 $\begin{array}{l} \mathsf{G4+noise+beamspot}\\ E_{\gamma}=1356\,\mathrm{MeV} \end{array}$

