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What is jet quenching phenomenology. . .

. . . as opposed to jet quenching theory?

My attempt at a de�nition

In phenomenology, people are trying to

I quantitatively describe data,

I arrive at a comprehensive physical picture encompassing all aspects.
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What is jet quenching phenomenology. . .

. . . as opposed to jet quenching theory?

My attempt at a de�nition

In phenomenology, people are trying to

I quantitatively describe data,

I arrive at a comprehensive physical picture encompassing all aspects.

Consequences of having to deal with all relevant aspects

I often cannot treat e�ects with same theoretical rigour as when
concentrating on one aspect

I have to rely more on (phenomenological) models

I suitable tools: Monte Carlo event generators
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Thoughts on jet quenching models

We have a variety of � partly very di�erent � models.
AMPT, BAMPS, HybridModel, HYDJET++, JEWEL, LBT,

MARTINI, MATTER, Q-HERWIG, Q-PYTHIA, . . .

Why I think this is a good thing:

1. it is always good to have several independent approaches
even for a well-de�ned task like PDF �tting

I even formally sub-leading choices can be numerically relevant
I independent checks help avoid bugs and problems

2. we are dealing with complex multi-scale problem
→ have to test ideas, approximations and hypotheses

3. models are developed for di�erent purposes, for example
I a minimal model to test a well-de�ned physical picture
I a �exible multi-component model to describe large variety of data

plus everything in between and others
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Thoughts on jet quenching models

I di�erent approaches are needed
for falsifying theoretical ideas,

testing approximations,

modeling of data for unfolding etc.,

. . .

I when comparing models, keep in mind that they may be very di�erent

I as a user one has to
I keep in mind models are designed to do di�erent things
I choose one �t for the purpose
I interpret results accordingly

I standards like Rivet can save a lot of our time
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What we want to know

A subset of the questions we are trying to answer:

I What are the most relevant mechanisms leading to jet energy loss?

I Are the jet and the medium strongly coupled?

I Does the jet resolve quasi-particles in the medium?

I How does the medium react to the energy and momentum deposition?

I How does this in turn a�ect the jet?
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Energy loss mechanism

Idea: distinguish radiative and collisional e-loss via path length dependence

CMS, Phys. Lett. B 776 (2018) 195 [arXiv:1702.00630]

Betz at al, Phys. Rev. C 95 (2017) no.4, 044901 [arXiv:1609.05171]
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Energy loss mechanism � problem solved?

Well, not really. . .

I energy loss model a simple parameterisation

I coherent radiative energy no ∆E ∝ L2 under realistic conditions
Zapp, Wiedemann, Eur. Phys. J. C 72 (2012) 2028, [arXiv:1202.1192]
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Energy loss mechanism � problem solved?

Well, not really. . .

I energy loss model a simple parameterisation

I coherent radiative energy no ∆E ∝ L2 under realistic conditions
Zapp, Wiedemann, Eur. Phys. J. C 72 (2012) 2028, [arXiv:1202.1192]

So what do dynamical energy loss models have to say?

b
b

b

b

b
b

b
b

ATLAS datab

JEWEL+PYTHIA

0.5

0.55

0.6

0.65

0.7

0.75

(10-20)%, 45GeV < p⊥ < 60GeV

1
/
N
je
t
d
2
N
je
t/
d
p
⊥
d

∆
φ
∣ ∣ ∣ co

rr
[G

eV
−
1
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.6

0.8

1

1.2

1.4

∆φ

M
C
/
d
a
ta

b

b

b

b

b

b
b b

ATLAS datab

JEWEL+PYTHIA

0.5

0.55

0.6

0.65

0.7

0.75

(40-50)%, 45GeV < p⊥ < 60GeV

1
/
N
je
t
d
2
N
je
t/
d
p
⊥
d

∆
φ
∣ ∣ ∣ co

rr
[G

eV
−
1
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.6

0.8

1

1.2

1.4

∆φ

M
C
/
d
a
ta

A
T
L
A
S
,
P
h
y
s.
R
e
v
.
L
e
tt
.
1
1
1
(2
0
1
3
)
1
5
2
3
0
1

Z
a
p
p
,
P
h
y
s.
L
e
tt
.
B

7
3
5
(2
0
1
4
)
1
5
7

Jet quenching phenomenology Korinna Zapp



Introduction What we have learned (a selection) Summary

Energy loss mechanism � problem solved?

LBT

He, PoS HardProbes 2018 (2019) 100

I radiative & collisional energy loss

MATTER

Cao, Majumder, arXiv:1712.10055 [nucl-th]

I only radiative energy loss
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Energy loss mechanism � why is this so di�cult?

Observations

I jet evolution gets convoluted with space-time dependent density

I background �uctuations are large and have to be taken into account
dilutes path length dependence

Betz at al, Phys. Rev. C 95 (2017) no.4, 044901 [arXiv:1609.05171]

I energy loss �uctuations are also important dilutes path length dependence

Milhano, Zapp, Eur. Phys. J. C 76 (2016) no.5, 288

Escobedo, Iancu, JHEP 1605 (2016) 008 & JHEP 1612 (2016) 104

I �observation bias�: energy loss + jet p⊥ cut favour narrow jets
narrow jets have smaller-than-average energy loss

Milhano, Zapp, Eur. Phys. J. C 76 (2016) no.5, 288

Rajagopal, Sadofyev, van der Schee, Phys. Rev. Lett. 116 (2016) no.21, 211603 [arXiv:1602.04187]

Casalderrey-Solana, Gulhan, Milhano, Pablos, Rajagopal, JHEP 1703 (2017) 135 [arXiv:1609.05842]

I surface bias observed jets may have smaller-than-average path length

amount of surface bias varies widely from model to model
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Energy loss mechanism � why is this so di�cult?

Conclusions

I requires detailed and dynamical modeling

I so far we didn't learn what we wanted to know. . .

I . . . but we did learn other interesting things
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Jet-medium interactions: weak or strong coupling?

I Are the jet and the medium strongly coupled?

I Does the jet resolve quasi-particles in the medium?
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Jet-medium interactions: weak or strong coupling?

I Are the jet and the medium strongly coupled?

I Does the jet resolve quasi-particles in the medium?

q

q

I momentum transfer q from medium de�nes resolution
I jets resolve medium & medium resolves jets

I low q: jet sub-structure not resolved → unmodi�ed jet core
I high q: jet structure resolved → can modify jet core

I jet sub-structure observables should be able to distinguish them
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Medium response

background

jet

I ideal situation: �at background � can be subtracted
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Medium response

background

jet

background

jet
background

correlated

I ideal situation: �at background � can be subtracted

I more realistic: �uctuating background � can be subtracted on average,
have to unfold

I medium response → correlated background
I activity above background
I correlated background cannot and should not be subtracted
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Medium response

background

jet

background

jet correlated
background

I ideal situation: �at background � can be subtracted

I more realistic: �uctuating background � can be subtracted on average,
have to unfold

I medium response → correlated background
I activity above background
I correlated background cannot and should not be subtracted

I �nally: also �uctuations in correlated part of background matter

I a�ects reconstructed jets, particularly jet sub-structure
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Intra-jet energy distribution: Jet pro�le

CMS, Phys. Lett. B 730 (2014) 243

I suppression of activity at intermediate r

I increase near the edge of the jet

I is this medium response?
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Jet pro�le: results
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Jet pro�le: conclusion

One more result
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Casalderrey-Solana et al, JHEP 1703 (2017) 135

A sobering conclusion

I looked like a promising observable to see medium response

I models don't agree

I will require further work
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Consistency of jet mass and pro�le?

Kunnawalkam Elayavalli, Zapp, JHEP 1707 (2017) 141
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Casalderrey-Solana et al, JHEP 1703 (2017) 135, talk by D. Pablos at Hard Probes 2018
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This is intriguing. . .

I HybridModel and JEWEL are very di�erent models
I HybridModel: AdS/CFT energy loss
I JEWEL: pQCD based re-scattering

I overall performance very similar

I orthogonal assumptions about recoil particles/energy:
I HybridModel: fully thermalised
I JEWEL: free streaming recoils

I can this discrepancy teach us something about medium response?
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Warning!

Comparisons to ALICE's jet mass should be taken with a grain of salt

I jet mass receives large non-perturbative corrections
not the most solid part of the model

I hadronisation not retuned with JEWEL parton shower
usually �ne, as JEWEL parton shower similar to PYTHIA's

I ALICE measures charged jet mass � cannot be calculated in JEWEL
requires ad-hoc rescaling

I ALICE's area based subtraction for jet mass cannot be paralleled in
JEWEL
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Fixing a problem in subtraction for JEWEL helps
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Re-scattering of recoils in JEWEL

I new option: allow for re-scattering of recoils

I can a�ord only re-scattering of hard recoils
internal event record too small

I preliminary results for recoils with p > 4× 3T

T = 500MeV, recoil
T = 500MeV, medium

T = 200MeV, recoil
T = 200MeV, medium
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Zapp, Ingelman, Rathsman, Stachel and Wiedemann, Eur. Phys. J. C 60 (2009) 617
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Re-scattering of recoils in JEWEL
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Summary

I phenomenology relies on models

I tries to construct a coherent model of jet-medium interactions

I what we haven't learned so far:
I how much of the energy loss is radiative and collisional?
I are jets and medium weakly or strongly coupled?
I is the jet pro�le modi�cation due to medium response?
I what can jet mass and jet pro�le teach us about medium response?

I what we have learned instead:
I �uctuations matter

I background �uctuations
I energy loss �uctuations
I �uctuations in hard (vacuum-like) fragmentation pattern

→ �observation bias�
I theory - data comparisons have to be apples-to-apples

I we are close to constraining medium response with jet sub-structure
. . . my humble opinion. . .
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