Jet quenching theory ...a brief introduction

Yacine Mehtar-Tani (BNL)

Open Symposium: The space-time structure of jet quenching: theory and experiment

August 12, 2019 @ GSI, Darmstadt

Outline

- Introduction to jets
- Jet quenching building blocks: momentum broadening and the LPM effect
- Soft components: medium induced turbulent cascade and medium response
- Color decoherence of jet substructure

Jets as footprints of quarks and gluons

 Jets are collimated spray of particles observed in high energy collisions (e+e-, electron-proton, proton-proton, ion-ion)

Dijet event in proton-proton collisions from CMS (LHC)

Jets as footprints of quarks and gluons

 Two jet events predicted to dominate the cross section in e+e- at high energy

Ellis, Gaillard and Ross (1976) Weinberg and Sterman (1977)

Evidence of the existence of the gluon: 3-jet topology

Jets in the LHC era (precision QCD)

Jets are instrumental in BSM and Higgs search at the LHC

• At the LHC, 60 - 70 % of ATLAS & CMS papers use jets in their analysis!

 Monte Carlo Even Generators: such as Pythia, Herwig, Sherpa, etc. are important for QCD modeling and higher order computations.
 Include parton cascade and Hadronization models (Lund, Cluster)

QCD jets in a nutshell

Soft & Collinear divergences: high probability for branching

$$\mathrm{d}P \sim \alpha_s C_R \, \frac{\mathrm{d}\theta}{\theta} \, \frac{\mathrm{d}\omega}{\omega}$$
 color factor $C_R \equiv$

- color factors (quark and gluon):
 - $C_R \equiv C_F$ or C_A
- Jet collimation: jets are dominated by collinear splittings
- Color coherence: soft radiation depleted due to destructive interference

[Bassetto, Ciafaloni, Marchesini, Mueller, Dokshitzer, Khoze, Toyan, Collins, Soper, Sterman ... 1980's]

QCD jets in a nutshell (color coherence)

Fragmentation function: distribution of hadrons within jets

[Bassetto, Ciafaloni, Marchesini, Mueller, Dokshitzer, Khoze, Toyan, Collins, Soper, Sterman ... 1980's]

Jet quenching

Jet physics at colliders (T=0)

nucleus

proton

QGP

Crossover phase transition (from lattice QCD)

 $T \sim 350 \, \mathrm{MeV}$

- Jet quenching refers to the suppression and modification of a jet as it propagates through hot QCD matter
- Strong final state interactions cause high pT jets to lose energy to the plasma

RHIC:

Jet quenching

- Two decades after Bjorken prediction of jet quenching, the suppression of high-pT hadrons was observed at RHIC and confirmed at LHC where a strong quenching of 1 TeV jets was observed
- Goal: Use jets as test particles to learn about the properties of of the Quark-Gluon-Plasma (QGP)

Inclusive hadrons

$$R_{AA} \equiv \frac{1}{N_{coll}} \frac{\mathrm{d}N_{AA}/\mathrm{d}p_T}{\mathrm{d}N_{pp}/\mathrm{d}p_T}$$

10

Probing high density QCD with jets

- Guidance from first principles: how does a jet as a multi-parton system interact with the QGP? Is it perturbative?
 - → How is energy transported from energetic partons to low momenta and dissipated in the QGP?
 - → How is the jet substructure modified?

$$p_{soft} \sim T \sim 1 \; GeV$$
 $energy flux$ $p_{Tjet} \sim 1 \; TeV$

Multiple soft scattering and \hat{q}

 In a dense colored medium (QGP) a high energy parton produced in a hard collision undergoes multiple interactions with the plasma constituents

$$\frac{\mathrm{d}P}{\mathrm{d}z\,\mathrm{d}q_\perp^2} \sim \alpha_s^2\,C_R\,\frac{n}{q_\perp^4} \qquad \to \text{ Coulomb scattering}$$

 Momentum boarding: the dominant collisions are soft. The effect is a diffusion in transverse momentum space

The LPM effect on the back of the envelop

 The energy spectrum of photons caused by the propagation of a relativistic charge in a medium is suppressed due to coherence effects (Landau-Pomeranchuk Migdal 1953)

 The radiation formation time, together with transverse momentum broadening define the LPM time scale

$$\begin{array}{ccc} \boldsymbol{t_f} \sim \omega/k_{\perp}^2 & \Longrightarrow & t_f(\omega) \equiv \sqrt{\frac{\hat{q}}{\omega}} \\ k_{\perp}^2 \sim \hat{q} \, \boldsymbol{t_f} & & \end{array}$$

 The radiation spectrum: large multiplicity in the infrared and quadratic system size scaling of energy loss

$$\omega \frac{\mathrm{d}I^{LPM}}{\mathrm{d}\omega} \sim \alpha_s \sqrt{\frac{\hat{q}}{\omega}} L \propto \frac{1}{\sqrt{\omega}}$$

$$\Delta E_{\rm rad} \sim \int d\omega \omega \frac{dI}{d\omega} \sim \alpha_s \hat{q} L^2$$

Medium-induced turbulent cascade

 $T \ll \omega \ll p_T$

Multiple scattering trigger abundant soft gluon with constant rate

$$\omega \frac{\mathrm{d}^2 P_{\mathrm{rad}}}{\mathrm{d}\omega \, \mathrm{d}z} \sim \alpha_s \, C_R \, \sqrt{\frac{\hat{q}}{\omega}}$$

[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (1996) Wiedemann (2000) Arnold, Moore, Yaffe (2002), Gyulassy, Levai, Vitev (2000) Guo, Wang (2000)]

Large angle cascade for $\omega \sim \alpha_s^2 \hat{q} L^2 \ll p_T \longrightarrow \text{minijet thermalization}$

Richardson cascade

Missing pT in dijet events $\omega \sim T$

Energy flows from high to low frequencies without accumulation: efficient

mechanism for energy transport to large angles

Blaizot, MT, Torres (2014)

Energy is recovered at large angles in soft particles

Medium response ($\omega \sim T$)

 Similar effect obtained by assuming direct energy deposition in the plasma: hydrodynamic response, linear Boltzmann

 Medium excitation correlated with the jet: may cause enhancement of soft radiation inside the jet

 Implemented in several MC event generators: JEWEL, HYBRID model, MARTINI (and available in JETSCAPE)

Wang, Wei, Zhang (2017)

Color decoherence of jet substructure

- The jet is composed of many partons as it traverses the plasma It is tempting to assume that jet constituents interact independently with the plasma.
- However, interactions are not point-like: the medium resolves jet fluctuations at transverse distances of order

$$l_{\text{med}} \sim k_{\perp}^{-1} \sim (\hat{q} t)^{-1/2}$$

Color decoherence of jet substructure

Comparing the medium resolution scale to the transverse size of a partonic fluctuation defines a new time scale

$$l_{\text{med}} \sim k_{\perp}^{-1} \sim (\hat{q} t)^{-1/2} \ll r_{\perp} \sim \theta t$$

The medium resolves jet substructure (subjets) when

$$\theta > \theta_c \sim (\hat{q}L^3)^{-1/3}$$
$$t_d \sim (\hat{q}\theta^2)^{-1/3} < L$$

MT, Salgado, Tywoniuk (2010-11) Iancu, Casalderrey-Solana (2011)

Radiation intensity is proportional to the number of resolved color charges

Monte Carlo Event Generators and data

- Several Monte Carlo event generators in the market: JEWEL, Q-Pythia, MARTINI, CoLBT, LBT, Hybrid, MATTER (some available in a common platform, JETSCAPE) → More or less successful in describing substructure observables...do not account for color coherence yet
- ▶ Recent implementations of color decoherence:

Weak coupling QCD based MC

(no medium dynamics yet)

Hybrid model: Pythia + strong coupling energy loss model

Casalderrey-Solana, Milhano, Pablos, Rajagopal (2017-2019)

Higher order corrections to the jet spectrum

Higher order corrections to the jet spectrum

MT, Tywoniuk (2018)

Sensitivity of the nuclear modification factor to color coherence

$$\theta_c \sim (\hat{q}L^3)^{1/3} \sim 0.1$$

w/o color coherence: MC event generators: Hybrid

Model, JEWEL and MARTINI

Caveat: theoretical idealization

Softening of Fragmentation Function

A softening of the Fragmentation function observed in the data

- Possible mechanism: in-cone decoherent vacuum radiation
- Other explanation: medium response

Summary

- QCD jet evolution in the presence of a QGP is multifaceted: in addition to the vacuum collinear cascade a medium induced shower responsible for jet quenching forms at large angles
- Jets in HIC are probes of the QGP and constitute a unique tool to study QCD far-from-equilibrium and thermalization
- QCD coherence phenomena such as the LPM effect and color (de)coherence play an important role in jet quenching and may be more directly investigated with substructure observables
- A plethora of MC event generators encoding different physics. A common picture of the perturbative component of jet evolution in a QGP remains to be achieved → Need analytic guidance to reduce dependence on modeling