CBM physics performance studies for anisotropic flow measurements

- O. Golosov (MEPhI)
- V. Klochkov (GSI/Frankfurt University)
- E. Kashirin (MEPhI)
- I. Selyuzhenkov (GSI/MEPhI)

for the CBM Collaboration

XIV Workshop on Particle Correlations and Femtoscopy, Dubna, Russia

6/06/2019

Outline

T

~150 MeV

• Physics motivation

CBM experimental setup

• Conclusions and outlook

• Flow performance studies

Structure of the QCD matter phase diagram

Structure of the QCD matter phase diagram

CBM physics and observables

- Quark matter equation-of-state at large baryon densities, coexistence (quarkyonic) & partonic phases:
 - Hadron yields, collective flow, correlations, fluctuations
 - (Multi-)strange hyperons (K, Λ , Σ , Ξ , Ω)
 - production at (sub)threshold energies
- Chiral symmetry at large baryon densities
- Hypernuclei
- Charm production and propagation at threshold energies
 - Excitation function in p+A collisions (J/ ψ , D⁰ , D⁺⁻)
 - Charmonium suppression in cold nuclear matter CBM collaboration, EPJA 53 (2018) 60

Compressed Baryonic Matter in Laboratory Experiments

2 Springer

Collision geometry and anisotropic transverse flow

Asymmetry in coordinate space converts due to interaction into momentum

asymmetry with respect to the symmetry plane (reaction plane - RP)

Needed components to calculate v_n :

- momentum (ϕ , Y, p_T)
- centrality estimation
- particle identification
- Ψ_{RP} estimation

Collective flow at FAIR energies

CBM will extend existing data and provide new measurements for identified particles including multistrange hyperons and di-leptons

Collective flow at FAIR energies

CBM will extend existing data and provide new measurements for identified particles including multistrange hyperons and di-leptons

Experiments in the high net-baryon density

CBM collaboration, EPJA 53 (2018) 60

CBM will operate at high reaction rates: 10⁵ - 10⁷ Au+Au collisions/sec

Main experimental requirements

- High statistics needs high event rates: 10⁵ - 10⁷ Au+Au collisions/sec
- Fast, radiation hard detectors & front-end electronics
- Free-streaming readout & 4 dimensional (space+time) event reconstruction
- Particle identification: hadrons and leptons, displaced (~50 µm) vertex reconstruction for charm measurements
- High speed data acquisition & performance computing farm for online event selection

central Au+Au collision @ 10A GeV/c

GSI IT Center

CBM at FAIR, Darmstadt

CBM detector subsystems

STS

Silicon Tracking System*

MVD

Micro Vertex Detector*

* magnetic field

MuCh or RICH

MuonChamber System/ Ring Imaging Cherenkov Detector

TRD

Transition Radiation Detector

ToF

Time-of-Flight Detector

ECAL

Electromagnetic Calorimeter

PSD

Projectile Spectator Detector

Detector subsystems relevant to flow measurement

- Particle momentum (ϕ ,Y, p_{τ}): STS+MVD
- Centrality estimation: event classes defined with PSD energy (STS multiplicity)
- Particle identification: TOF
- Reaction plane (Ψ_{RP}): PSD transverse energy asymmetry (ϕ distribution in STS)

PSD transverse layout

Simulation setup

Model	UrQMD v3.4 (no fragments)
System	Au+Au
Beam momemtum	10A GeV/ <i>c</i>
Statistics	3M events
CBM geometry	MVD, STS, RICH, TDR, TOF, PSD
PSD geometry	20 cm hole size 44 modules
Transport code	GEANT3
Detector response	CBMROOT JUL17

Centrality determination with PSD energy

Centrality classes are defined using forward rapidity energy

Particle identification with Bayesian approach

Purity > 90%

Time-of-Flight technique provides clear separation between charged hadrons

Tracking efficiency correction

Correction for tracking efficiency was applied

Azimuthal angle acceptance

Non-uniformity of azimuthal acceptance – corrections are needed

Event plane and scalar product methods

$$v_n = \langle \cos[n(\varphi - \Psi_{RP})] \rangle$$

 v_n with respect to symmetry plane estimated using group of particles (subevent) A:

$$v_n(A;i) = \frac{\langle 2u_i Q_i^n(A) \rangle}{R_i^n(A)} \qquad i = (x,y)$$
$$\vec{u}_n = (\cos(n\varphi), \sin(n\varphi)) \qquad \vec{Q}_n = \frac{1}{N} \sum \omega_j \vec{u}_{n,j}$$

• mixed harmonic method:

$$R_i^n(\boldsymbol{A};\boldsymbol{B},\boldsymbol{C},\boldsymbol{D}) \propto \sqrt{\frac{\langle Q_i^1(\boldsymbol{A}) Q_i^1(\boldsymbol{B}) \rangle \langle Q_i^1(\boldsymbol{A}) Q_i^1(\boldsymbol{C}) Q_i^2(\boldsymbol{D}) \rangle}{\langle Q_i^1(\boldsymbol{B}) Q_i^1(\boldsymbol{C}) Q_i^2(\boldsymbol{D}) \rangle}}$$

Corrections for detector azimuthal non-uniformity

Flow Vector Corrections Framework

• Data driven corrections for azimuthal acceptance non-uniformity

I. Selyuzhenkov and S. Voloshin [PRC77 034904 (2008)]

- QnVector Corrections Framework (used by ALICE) J. Onderwaater, V. Gonzalez, I. Selyuzhenkov https://github.com/FlowCorrections/FlowVectorCorrections
- Recentering, twist, and rescaling corrections applied time dependent (run-by-run) and as a function of centrality

Flow Analysis Framework

- Extended flow-vector corrections for p_T/y -differential
- Multi-dimensional correlations of flow-vectors
 L. Kreis (GSI / Heidelberg) and I. Selyuzhenkov (GSI / MEPhI)

Correction factor for mixed harmonic

Neighboring PSD subevents correlation is distorted due to autocorrelations

Results

Results are presented for correlations between positively charged identified hadrons (pions and kaons) and all hadrons at forward rapidity (in the PSD acceptance).

The results are corrected for detector non-uniformity. Correction for PID efficiency is not done yet. Only statistical uncertainties are shown.

$\pi^+ v_1$ vs rapidity

pion v₁, PSD centrality 10-35%

Good agreement between simulated and reconstructed values

$\pi^+ v_1$ vs transverse momentum

pion v₁, PSD centrality 10-35%

Good agreement between simulated and reconstructed values

 $K^+ v_1$ vs rapidity

kaon v₁, PSD centrality 10-35%

Large statistics simulation is needed.

Summary

- CBM detector performance for flow measurement has been studied
 - π^+ and K⁺ directed flow for Au+Au collisions at 10A GeV/*c*

differentially vs rapidity and transverse momentum

- Centrality estimation using PSD
- Particle identification using TOF
- Acceptance corrections used in the ALICE experiment adopted to CBM
- Resolution correction with mixed harmonic
- Developed procedure allows to reconstruct model parameters

Outlook

- PID efficiency correction
- Performance for weakly decaying particles (Λ , Σ , Ξ , Ω)
- common Monte-Carlo production using GEANT4 is being prepared
 - PSD fast simulation in under investigation

Ongoing performance studies for lambda hyperon

Backup

Correction factor for mixed harmonic

PSD3, y-component

PSD1, y-component

Mixed harmonic calculation removes/suppresses contribution from non-flow

proton v_1 vs rapidity

Non uniform acceptance for protons results in difference between simulated and measured flow

Dense Baryonic Matter

Neutron stars

Neutron star merger

Heavy ion collisions

	GW170817	SIS100 energies
T < 10 MeV	T ~ 10-100 MeV	T < 120 MeV
ρ < 10 ρ ₀	ρ < 2 – 6 ρ ₀	ρ < 5 – 15 ρ,

Lifetime / Reaction time

Temperature

Density

~ infinity

T ~ 10 ms

120 MeV $5 - 15 \rho_0$ t ~ 10⁻²³ s

Challenges of event and track reconstruction in CBM

CBM simulation central Au+Au collision @ 10A GeV/c

- High multiplicity collisions
- Events in the selected time window (time slice) will overlap in time
- High interaction rate → reconstruction will be in 4D (space, time)
- Decay topology reconstruction

Multi-strange reconstruction

Decay topology reconstruction using the KFParticleFinder package

Hypernuclei

CBM simulation Au+Au 10A GeV/c minbias 5M events

CBM physics cases

- Λ -N, Λ - Λ interaction
- (Double-)lambda hypernuclei
- Meta-stable strange states

Dilepton measurements: e^+e^- and $\mu^+\mu^-$

In-medium modifications of light vector mesons

• ρ , ω , $\phi \rightarrow e^+ + e^- (\mu^+ + \mu^-)$ via dilepton measurements

CBM FAIR phase-0 program (before the start of operation in 2025)

- Use 430 out of 1100 CBM RICH multi-anode photo-multipliers (MAPMT) in HADES RICH photon detector (2019)
- Use 10% of the CBM TOF modules including read-out chain at STAR/RHIC (BES II 2019/2020)
- 4 Silicon Tracking Stations in the BM@N in JINR (start 2020 with Au-beams up to 4.5 A GeV)
- Projectile Spectator Detector at BM@N (2020)
- Tests and performance studies at the NA61/SHINE experiment @ CERN SPS
- mini CBM @ GSI/SIS18: full system test with high-rate A+A collisions (2019-2021)

mTOF at mCBM cave (September, 2018)

CBM area excavation

