
Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Automatic management of local bus address
space in complex FPGA-implemented hierarchical

systems

Wojciech M. Zabołotny1, Marek Gumiński1,Michał Kruszewski1,

1Institute of Electronic Systems, Warsaw University of Technology

XLIV-th IEEE-SPIE Joint Symposium Wilga 2019

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Introduction

The data processing systems are often implemented in FPGA as
parameterized, complex, multilevel hierarchical systems
Its configuration and diagnostics requires convenient access to the
internal blocks via control interface
Scalable and flexible implementation of the control interface is particularly
important in systems developed by many independent teams, or in
subsystems designed for reuse. An example may be firmware
components and subsystems developed for CBM experiment.

The key questions in such interfaces are:

routing of control interface between blocks
creating of address maps (assignment of addresses both for HW and SW)

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Introduction

The data processing systems are often implemented in FPGA as
parameterized, complex, multilevel hierarchical systems
Its configuration and diagnostics requires convenient access to the
internal blocks via control interface
Scalable and flexible implementation of the control interface is particularly
important in systems developed by many independent teams, or in
subsystems designed for reuse. An example may be firmware
components and subsystems developed for CBM experiment.
The key questions in such interfaces are:

routing of control interface between blocks
creating of address maps (assignment of addresses both for HW and SW)

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Vendor tools - Xilinx - block design

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Vendor tools - Xilinx - address allocation

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Vendor tools - summary

Well integrated with GUI

Intuitive user interface

Automatic assignment of addresses

Poor support for parametrized number of blocks

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Vendor tools - summary

Well integrated with GUI

Intuitive user interface

Automatic assignment of addresses

Poor support for parametrized number of blocks

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Internal Interface and Component Internal Interface

Source: [1]

VME-like interface inside FPGA

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Internal Interface and Component Internal Interface

Source: [2]

Sophisticated solution resulting in complex FPGA logic, not Open Source

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

IPbus addressing scheme

IPbus is well established standard for
Ethernet communication with
FPGA-based systems
It is fully Open Sourced
It uses nice XML tables for defining
addresses of slaves
There are software libraries for
Python and C++

Unfortunately, it provides very limited
support for automatic generation of
address tables

<node id="crob">
<node id="crob_addr_ver" address="0x0" permission="r"/>
<node id="sys_ctrl" address="0x200" permission="rw">
<node id="febs_mode" mask="0x0000000E"/>

</node>
<node id="link_mask[0]" address="0x201" permission="rw"/>
<node id="link_mask[1]" address="0x202" permission="rw"/>
<node id="ic">
<node id="ctrl" address="0x203" permission="rw">
<node id="reset" mask="0x00000001"/>
<node id="start_write" mask="0x00000002"/>
<node id="start_read" mask="0x00000004"/>
<node id="addr" mask="0x0000FF00"/>

</node>
<node id="tx_rega_nbtr" address="0x204" permission="rw">
<node id="reg_addr" mask="0x0000FFFF"/>
<node id="bytes_to_read" mask="0xFFFF0000"/>

</node>
<node id="tx_data" address="0x205" permission="rw"/>
<node id="status" address="0x1" permission="r">
<node id="ready" mask="0x00000001"/>
<node id="empty" mask="0x00000002"/>
<node id="addr" mask="0x0000FF00"/>

</node>
<node id="rx_mptr_nbw" address="0x2" permission="r">
<node id="mem_ptr" mask="0x0000FFFF"/>
<node id="words_read" mask="0xFFFF0000"/>

</node>
<node id="rx_data" address="0x3" permission="r"/>

</node>
[...]

</node>

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

IPbus addressing scheme

IPbus is well established standard for
Ethernet communication with
FPGA-based systems
It is fully Open Sourced
It uses nice XML tables for defining
addresses of slaves
There are software libraries for
Python and C++
Unfortunately, it provides very limited
support for automatic generation of
address tables

<node id="crob">
<node id="crob_addr_ver" address="0x0" permission="r"/>
<node id="sys_ctrl" address="0x200" permission="rw">
<node id="febs_mode" mask="0x0000000E"/>

</node>
<node id="link_mask[0]" address="0x201" permission="rw"/>
<node id="link_mask[1]" address="0x202" permission="rw"/>
<node id="ic">
<node id="ctrl" address="0x203" permission="rw">
<node id="reset" mask="0x00000001"/>
<node id="start_write" mask="0x00000002"/>
<node id="start_read" mask="0x00000004"/>
<node id="addr" mask="0x0000FF00"/>

</node>
<node id="tx_rega_nbtr" address="0x204" permission="rw">
<node id="reg_addr" mask="0x0000FFFF"/>
<node id="bytes_to_read" mask="0xFFFF0000"/>

</node>
<node id="tx_data" address="0x205" permission="rw"/>
<node id="status" address="0x1" permission="r">
<node id="ready" mask="0x00000001"/>
<node id="empty" mask="0x00000002"/>
<node id="addr" mask="0x0000FF00"/>

</node>
<node id="rx_mptr_nbw" address="0x2" permission="r">
<node id="mem_ptr" mask="0x0000FFFF"/>
<node id="words_read" mask="0xFFFF0000"/>

</node>
<node id="rx_data" address="0x3" permission="r"/>

</node>
[...]

</node>

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

IPbus extension - adr_gen

To support automatic generation of address
maps for IPbus, the “adr_gen” [3] system was
created
It uses the standard IPbus ipbus_ctrlreg_v block
which provides vector of control registers and
vector of status registers
Similar block may be also generated for AXI bus
instead of IPbus
The hierarchy of connected blocks and registers
is described in Python
The registers in connected hierarchy of blocks
are assigned consecutive addresses (that may
result in inefficient decoding)
The addresses are generated in VHDL package,
in IPbus XML and in Python module

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

IPbus extension - adr_gen

#!/usr/bin/python3
from addr_gen import *

#Definitions of constants used in the package
c.ADDR_VERSION=int(time.time())
c.N_OF_A = 13
c.N_OF_I2C_SLAVES = 6
c.N_OF_SPI_SLAVES = 8
c.N_OF_B = 5
c.N_OF_CELLS = 12

#Define registers in the BBlock
bbl_def=aobj("BBLOCK",[
("out_data",sreg_def,c.N_OF_CELLS),
("in_data",sreg_def,c.N_OF_CELLS),

])

#Define registers in SPI block
spi_def=aobj("SPI",[
("spi_config",creg_def),
("spi_status",sreg_def),
("spi_tx",creg_def),
("spi_rx",sreg_def),

])

#Define registers in I2C block
i2c_def=aobj("I2C",[
("i2c_config",creg_def),
("i2c_status",sreg_def),

("i2c_command",creg_def),
])

#Define registers and subblocks in the ABlock
abl_def=aobj("ABLOCK",[
("a_status",creg_def),
("a_control",creg_def,2),
("spi",spi_def,c.N_OF_SPI_SLAVES),
("i2c",spi_def,c.N_OF_I2C_SLAVES),

])

#Define registers and subblocks in the TOP block
top_def=aobj("TOP",[
("addr_ver",sreg_def),
("top_st",sreg_def),
("sys_ctrl",sreg_def),
("resets",creg_def),
("ab",abl_def,c.N_OF_A),
("bb",bbl_def,c.N_OF_B),

])

#Generate package with constants
gen_vhdl_const_package("top_const_pkg")

#Generate package with types and addresses
gen_vhdl_addr_package("top_adr_pkg","",crob_def,0,0)

#Generate Python module with addresses
gen_python_addr_module("top_adr",crob_def,0,0)

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

IPbus extension - adr_gen

VHDL code with type definitions

type T_I2C_CTRL is record
i2c_config : std_logic_vector(31 downto 0);
i2c_command : std_logic_vector(31 downto 0);

end record T_I2C_CTRL;
type T_I2C_CTRL_ARR is array(natural range<>)

of T_I2C_CTRL;

type T_SPI_CTRL is record
spi_config : std_logic_vector(31 downto 0);
spi_command : std_logic_vector(31 downto 0);

end record T_SPI_CTRL;
type T_SPI_CTRL_ARR is array(natural range<>)

of T_SPI_CTRL;

type T_ABL_CTRL is record
a_control: std_logic_vector(31 downto 0);
spi : T_SPI_CTRL_ARR(0 to N_OF_SPI_SLAVES-1);
i2c : T_I2C_CTRL_ARR(0 to N_OF_I2C_SLAVES-1);

end record T_ABL_CTRL;

VHDL code for connecting registers

-- Process for connecting the signals
process (all) is
begin -- process
stat_reg(tad_addr.addr_ver) <=

std_logic_vector(to_unsigned(32,ADDR_VERSION));
stat_reg(tad_addr.top_st) <= s_top_status;
s_top_control <= ctrl_reg(tad_addr.sys_ctrl);
s_resets <= ctrl_reg(tad_addr.resets);
for an in 0 to N_OF_A-1 loop

stat_reg(tad_addr.ab(an).a_status)<=s_a_stat(an).a_status;
s_a_ctrl(an)<=ctrl_reg(tad_addr.ab(an).a_control);
for spin in 0 to N_OF_SPI_SLAVES loop

s_a_ctrl(an).spi(spin).spi_config <=
ctrl_reg(tad_addr.ab(an).spi(spin).spi_config;

stat_reg(tad_addr.ab(an).spi(spin).spi_status) <=
s_a_stat(an).spi(spin).spi_status;

s_a_ctrl(an).spi(spin).spi_command <=
ctrl_reg(tad_addr.ab(an).spi(spin).spi_command;

end loop; -- spin
-- Similar loop for I2C slaves

end loop; -- an
-- Similar loop for B Blocks

end process;

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Wishbone slave generator (wbgen2)

It is fully Open Source (written in lua)
Uses C-like description of the
peripheral
Generates the HDL (VHDL/Verilog)
code for FPGA
Generates the C headers to access
registers
Generates very nice documentation
in LATEX, texinfo or HTML

Unfortunately, it does not handle
vectors of registers and hierarchy of
blocks

Source: [4]

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Wishbone slave generator (wbgen2)

It is fully Open Source (written in lua)
Uses C-like description of the
peripheral
Generates the HDL (VHDL/Verilog)
code for FPGA
Generates the C headers to access
registers
Generates very nice documentation
in LATEX, texinfo or HTML
Unfortunately, it does not handle
vectors of registers and hierarchy of
blocks

Source: [4]

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

All existing solutions had certain limitations

It appeared that none of them may be easily extended for our
needs

It was necessary to create a new system

The aim was to combine the best features of the existing solutions

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb selection of the bus

The solution was inspired by wbgen2

Wishbone bus is a standard Open Source internal bus for
FPGA-based system

IPbus slaves may be controlled by Wishbone bus

IPbus masters may control Wishbone bus in classic single mode

There are bridges enabling control of Wishbone bus from AXI
masters

Therefore Wishbone bus (WB) was selected as an FPGA internel
bus

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb structure of created system

It is possible to describe
complex multilevel hierarchical
system
It is possible to create vectors of
registers and blocks
The external control connections
in each block are limited to two
records
The internal control interface
(Local WB node) for each node
is automatically generated

IPbus
WB master

JTAG
WB master

Local WB
Node

Local WB
Node

Reg A1

Reg A2

Reg A3

Reg B1

Reg B10

[...]

Local WB
Node

Reg D1

Reg D10

[...]

Local WB
Node

Reg C1_1

Reg C1_8

[...]

Local WB
Node

Reg C2_1

Reg C2_8

[...]

Local WB
Node

Reg D_E_1

Reg D_E_11

[...]

Subblock C1

Subblock C2Subblock D_E

Subblock D

Subblock B

The whole system implemented in FPGA

CDC

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb local WB node

The local WB node includes
standard WB crossbar
It is possible to implement
crossbar in registered mode to
shorten critical path (at cost of
increased latency)

Wishbone
crossbar

Wishbone master
(or masters for top level block)

R
e

gi
st

er
s’

 W
B

 s
la

ve ID

VER

O
th

er
 r

eg
is

te
rs

Wishbone master buses to subblocks
(one array for each vector of subblocks)

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb system description

The system is described with XML files
<sysdef top="MAIN">

<block name="SYS1">
<creg name="CTRL" desc="Control register" stb="1">
<field name="START" width="1"/>
<field name="STOP" width="1"/>

</creg>
<sreg name="STATUS" desc="Status register" ack="1" />
<creg name="ENABLEs" desc="Link enable registers" reps="10" default="0x0"/>

</block>

<block name="MAIN">
<subblock name="LINKS" type="SYS1" reps="5"/>
<blackbox name="EXTERN" type="EXTTEST" addrbits="10" reps="3" />
<sreg name="INS" desc="Input registers" reps="2" ack="1" />
<creg name="CTRL" desc="Control register in the main block" default="0x11" stb="1">
<field name="CLK_ENABLE" width="1"/>
<field name="CLK_FREQ" width="4"/>
<field name="PLL_RESET" width="1"/>

</creg>
</block>

</sysdef>

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb VHDL package

For registers with bitfields, the VHDL package with complex data types is generated

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.wishbone_pkg.all;

package MAIN_wb_pkg is

subtype t_INS is std_logic_vector(31 downto 0);
type t_INS_array is array(0 to 1) of t_INS;

type t_CTRL is record
CLK_ENABLE:std_logic_vector(0 downto 0);
CLK_FREQ:std_logic_vector(3 downto 0);
PLL_RESET:std_logic_vector(0 downto 0);

end record;

function stlv2t_CTRL(x : std_logic_vector) return t_CTRL;
function t_CTRL2stlv(x : t_CTRL) return std_logic_vector;
end MAIN_wb_pkg;

package body MAIN_wb_pkg is
function stlv2t_CTRL(x : std_logic_vector) return t_CTRL is
variable res : t_CTRL;
begin

res.CLK_ENABLE := std_logic_vector(x(0 downto 0));
res.CLK_FREQ := std_logic_vector(x(4 downto 1));
res.PLL_RESET := std_logic_vector(x(5 downto 5));
return res;

end stlv2t_CTRL;

function t_CTRL2stlv(x : t_CTRL) return std_logic_vector is
variable res : std_logic_vector(31 downto 0);
begin

res := (others => '0');
res(0 downto 0) := std_logic_vector(x.CLK_ENABLE);
res(4 downto 1) := std_logic_vector(x.CLK_FREQ);
res(5 downto 5) := std_logic_vector(x.PLL_RESET);
return res;

end t_CTRL2stlv;
end MAIN_wb_pkg;

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb VHDL for local WB node
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.wishbone_pkg.all;
use work.MAIN_wb_pkg.all;

entity MAIN_wb is
port (
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
EXTERN_wb_m_o : out t_wishbone_master_out_array(0 to 2);
EXTERN_wb_m_i : in t_wishbone_master_in_array(0 to 2);
LINKS_wb_m_o : out t_wishbone_master_out_array(0 to 4);
LINKS_wb_m_i : in t_wishbone_master_in_array(0 to 4);

INS_i : in t_INS_array;
INS_i_ack : out std_logic;
CTRL_o : out t_CTRL;
CTRL_o_stb : out std_logic;

rst_n_i : in std_logic;
clk_sys_i : in std_logic
);

end MAIN_wb;
-- [...]
-- (Implementation of the entity is omitted)

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb algorithm for address allocation

The algorithm starts from the most nested blocks
For each block required number of addresses N is calculated from the number
of its registers
The power of 2 2K ≥ N is found. K is the number of address bits required by
the block
For the parent block the required number of addresses is calculated basing on
the number of its registers and requirements (2K) of the child blocks.
The blocks are sorted in the order of decreasing number of addresses.
The based addresses are assigned starting from address 0. Each 2M group of
addresses is aligned to the 2M boundary. That simplifies address decoders.
In the parent blocks the addresses for child blocks are allocated in the same
way, starting from the base address of the parent.

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb IPbus compatible address table
<node id="MAIN">
<node id="EXTERN[0]" address="0x00000000" module="file://EXTERN_address.xml"/>
<node id="EXTERN[1]" address="0x00000400" module="file://EXTERN_address.xml"/>
<node id="EXTERN[2]" address="0x00000800" module="file://EXTERN_address.xml"/>
<node id="LINKS[0]" address="0x00001000" module="file://SYS1_address.xml"/>
<node id="LINKS[1]" address="0x00001010" module="file://SYS1_address.xml"/>
<node id="LINKS[2]" address="0x00001020" module="file://SYS1_address.xml"/>
<node id="LINKS[3]" address="0x00001030" module="file://SYS1_address.xml"/>
<node id="LINKS[4]" address="0x00001040" module="file://SYS1_address.xml"/>
<node id="ID" address="0x00001080" permission="r"/>
<node id="VER" address="0x00001081" permission="r"/>
<node id="INS[0]" address="0x00001082" permission="r"/>
<node id="INS[1]" address="0x00001083" permission="r"/>
<node id="CTRL" address="0x00001084" permission="rw">
<node id="CLK_ENABLE" mask="0x00000001"/>
<node id="CLK_FREQ" mask="0x0000001e"/>
<node id="PLL_RESET" mask="0x00000020"/>

</node>
</node>

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb Forth compatible address table
: %/ $0 ;
: %/#EXTERN %/ $0 + swap $400 * + ;
: %/#LINKS %/ $1000 + swap $10 * + ;
: %/#LINKS_ID %/#LINKS $0 + ;
: %/#LINKS_VER %/#LINKS $1 + ;
: %/#LINKS_CTRL %/#LINKS $2 + ;
: %/#LINKS_CTRL.START %/#LINKS_CTRL $1 $0 ;
: %/#LINKS_CTRL.STOP %/#LINKS_CTRL $2 $1 ;
: %/#LINKS_STATUS %/#LINKS $3 + ;
: %/#LINKS#ENABLEs %/#LINKS + $4 + ;
: %/_ID %/ $1080 + ;
: %/_VER %/ $1081 + ;
: %/#INS %/ + $1082 + ;
: %/_CTRL %/ $1084 + ;
: %/_CTRL.CLK_ENABLE %/_CTRL $1 $0 ;
: %/_CTRL.CLK_FREQ %/_CTRL $1e $1 ;
: %/_CTRL.PLL_RESET %/_CTRL $20 $5 ;

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

addr_gen_wb - latest extensions

The system is intensively developed and certain extensions were
added after the preparation of the SPIE paper:

Possibility to include XML files (with special <!– include
path/to/file.xml –> metacomment)
Possibility to define constants and use expressions inside of the
system definition

<sysdef top="MAIN">
<constant name="NEXTERNS" val="4" />
<constant name="NSEL_BITS" val="3" />
<constant name="NSEL_MAX" val="(1 << NSEL_BITS)-1" />
<!-- include block1.xml -->
<block name="MAIN">
<subblock name="LINKS" type="SYS1" reps="NSEL_MAX+1"/>
<blackbox name="EXTERN" type="EXTTEST" addrbits="10" reps="NEXTERNS" />
<creg name="CTRL" desc="Control register in the main block" default="0x11">
<field name="CLK_ENABLE" width="NSEL_BITS"/>
<field name="CLK_FREQ" width="4"/>
<field name="PLL_RESET" width="1"/>

</creg>
</block>
</sysdef>

ISE

Automatic addres management in FPGA

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Results & Conclusions

addr_gen_wb supports automated allocation of the addresses for registers in the
complex, hierarchical data processing systems implemented in the FPGA.
addr_gen_wb automatically generates VHDL code needed to provide Wishbone
bus connectivity for nested blocks.
It is possible to create vectors of registers or blocks.
For registers with bitfields the VHDL record types and conversion functions are
automatically created.
addr_gen_wb supports parameterized definition of the system.

The blocks comprising the system are well isolated regarding their interconnection
with the control bus. That facilitates development and maintaining of systems
assembled from blocks developed different teams independently. That’s an
essential feature in electronics created e.g., for High Energy Physics experiments.
addr_gen_wb has been successfully used in the development of FPGA firmware for
the GBTX emulator for CBM experiment. It is also planned as a tool to integrate
various blocks in the future CRI firmware for the CBM experiment.
Sources of addr_gen_wb are available in the Github repository
https://github.com/wzab/addr_gen_wb [5].

ISE

Automatic addres management in FPGA

https://github.com/wzab/addr_gen_wb
https://github.com/wzab/addr_gen_wb

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Results & Conclusions

addr_gen_wb supports automated allocation of the addresses for registers in the
complex, hierarchical data processing systems implemented in the FPGA.
addr_gen_wb automatically generates VHDL code needed to provide Wishbone
bus connectivity for nested blocks.
It is possible to create vectors of registers or blocks.
For registers with bitfields the VHDL record types and conversion functions are
automatically created.
addr_gen_wb supports parameterized definition of the system.
The blocks comprising the system are well isolated regarding their interconnection
with the control bus. That facilitates development and maintaining of systems
assembled from blocks developed different teams independently. That’s an
essential feature in electronics created e.g., for High Energy Physics experiments.

addr_gen_wb has been successfully used in the development of FPGA firmware for
the GBTX emulator for CBM experiment. It is also planned as a tool to integrate
various blocks in the future CRI firmware for the CBM experiment.
Sources of addr_gen_wb are available in the Github repository
https://github.com/wzab/addr_gen_wb [5].

ISE

Automatic addres management in FPGA

https://github.com/wzab/addr_gen_wb
https://github.com/wzab/addr_gen_wb

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Results & Conclusions

addr_gen_wb supports automated allocation of the addresses for registers in the
complex, hierarchical data processing systems implemented in the FPGA.
addr_gen_wb automatically generates VHDL code needed to provide Wishbone
bus connectivity for nested blocks.
It is possible to create vectors of registers or blocks.
For registers with bitfields the VHDL record types and conversion functions are
automatically created.
addr_gen_wb supports parameterized definition of the system.
The blocks comprising the system are well isolated regarding their interconnection
with the control bus. That facilitates development and maintaining of systems
assembled from blocks developed different teams independently. That’s an
essential feature in electronics created e.g., for High Energy Physics experiments.
addr_gen_wb has been successfully used in the development of FPGA firmware for
the GBTX emulator for CBM experiment. It is also planned as a tool to integrate
various blocks in the future CRI firmware for the CBM experiment.

Sources of addr_gen_wb are available in the Github repository
https://github.com/wzab/addr_gen_wb [5].

ISE

Automatic addres management in FPGA

https://github.com/wzab/addr_gen_wb
https://github.com/wzab/addr_gen_wb

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Results & Conclusions

addr_gen_wb supports automated allocation of the addresses for registers in the
complex, hierarchical data processing systems implemented in the FPGA.
addr_gen_wb automatically generates VHDL code needed to provide Wishbone
bus connectivity for nested blocks.
It is possible to create vectors of registers or blocks.
For registers with bitfields the VHDL record types and conversion functions are
automatically created.
addr_gen_wb supports parameterized definition of the system.
The blocks comprising the system are well isolated regarding their interconnection
with the control bus. That facilitates development and maintaining of systems
assembled from blocks developed different teams independently. That’s an
essential feature in electronics created e.g., for High Energy Physics experiments.
addr_gen_wb has been successfully used in the development of FPGA firmware for
the GBTX emulator for CBM experiment. It is also planned as a tool to integrate
various blocks in the future CRI firmware for the CBM experiment.
Sources of addr_gen_wb are available in the Github repository
https://github.com/wzab/addr_gen_wb [5].

ISE

Automatic addres management in FPGA

https://github.com/wzab/addr_gen_wb
https://github.com/wzab/addr_gen_wb

Introduction Vendor tools CII & II IPbus wbgen2 addr_gen_wb Conclusions

Bibliography
[1] Krzysztof T. Poźniak.

Internal interface i/o communication with fpga circuits and hardware description standard for applications in hep
and fel electronics ver. 1.0, 2005.
Available from the website
https://flash.desy.de/reports_publications/tesla_reports/tesla_reports_2005/ .

[2] Pawel Drabik and Krzysztof T. Pozniak.
Maintaining complex and distributed measurement systems with component internal interface framework.
In Ryszard S. Romaniuk and Krzysztof S. Kulpa, editors, Proc. SPIE, volume 7502, page 75022C, Wilga, Poland,
June 2009.

[3] Adr_gen - automatic address generator.
https://github.com/wzab/wzab-hdl-library/tree/master/addr_gen .

[4] Wishbone slave generator.
https://www.ohwr.org/project/wishbone-gen .

[5] Wojciech M. Zabołotny.
adr_gen_wb.py - register access for hierarchical wishbone connected systems, 2017.
https://github.com/wzab/addr_gen_wb .

ISE

Automatic addres management in FPGA

https://flash.desy.de/reports_publications/tesla_reports/tesla_reports_2005/
https://flash.desy.de/reports_publications/tesla_reports/tesla_reports_2005/
https://github.com/wzab/wzab-hdl-library/tree/master/addr_gen
https://github.com/wzab/wzab-hdl-library/tree/master/addr_gen
https://www.ohwr.org/project/wishbone-gen
https://www.ohwr.org/project/wishbone-gen
https://github.com/wzab/addr_gen_wb
https://github.com/wzab/addr_gen_wb

	Introduction
	Vendor tools
	CII & II
	IPbus
	wbgen2
	addr_gen_wb
	Conclusions

