STT CALIBRATION AND TRACKING

PANDA COLLABORATION MEETING

26.06.2019 I GABRIELA PÉREZ ANDRADE

Member of the Helmholtz Association

OVERVIEW

- The PANDA STT
- The HADES STS
- Testbeams at COSY
 - Raw data & calibration
 - Tracking
- Next steps

THE PANDA STT

Straws design

- 4224 straws in 19 axial and 8 stereo (±3°) layers
- 27µm Al-Mylar film, 1400 mm length, 10 mm diameter
- Ar/CO2 gas mixture at 1 bar overpressure
- Continuous data stream readout (~ 15GB/s)
- Charged particles will describe helical trajectories

Figure. Straws components.

Figures. PANDA-STT layout

Figure. Electrons drift from particles path through the straw

Detection method

- Charged particles traversing straws ionize gas molecules.
- Due to voltage difference between tube and wire, e^- drift towards wire
- Shortest distance from particle track to wire provided by earliest e^- to arrive.
- Drift time and charge readout used for tracking and PID (dE/dx)

Member of the Helmholtz Association

26 June 2019

Page 3

THE HADES STS

For HADES upgrade (FAIR Phase 0)

- Straws detection principles same as PANDA STT
- No magnetic field at forward detector
- Triggered data tacking
- Forward Straw Tracker Stations :
 - STS1 (Jülich, assembly currently ongoing):
 - 640 channels, 20 modules
 - Double layers with: 90°,0°, 0°, 90°
 - STS2 (Krakow):
 - 896 channels, 28 modules
 - Double layers with: 0°, 90°, 45°, 45°
- Straw modules to be used in PANDA-FTS

Member of the Helmholtz Association

26 June 2019

Figure. Example of straws arrangement (FT and STS case).

Page 4

TESTBEAMS AT COSY (2016 & 2018)

Protons and Deuterons

- Momentum range: 0.5 3.0 GeV/c (~ 1 10 × MIP)
- Setups with 24 straws per layer:
 - Particle tracks with > 24 hits simmilar to PANDA STT case
- Ar/CO2 gas mixture
- Data in analysis stage.

Current analysis addressing:

- Raw data calibration
- Tracking
- PID

For each beam case.

One of the two straw test systems. Beam enters from the right.

Straw signals (in-beam)

Member of the Helmholtz Association

26 June 2019

Page 5

Figures. One of the two straw test systems.

- Raw data: Signal times (t_{LE}, t_{TE}) and Channel number (i_{chan})
- Signal pulse width gives $ToT = t_{LE} t_{TE}$
- From individual channel t_{LE} time distribution:
 - Minimum (t_0) from track close to wire
 - Specific channel t₀ offset correction
 - Maximum (t_{max}) from track close to the cathode wall
- Drift time spectra obtained by substracting t_0 from raw t_{LE}
- Radial distance from particle's path to wire (isochrone radii) parametrized as a polynomial function of the drift times:

$$r(t) = \sum P_i \times t^i$$

Member of the Helmholtz Association

26 June 2019

TRACKING

- 1. Pre-fit parameters: Position of fired wires
 - Obtain r_{iso} for each hit contained in the event with calibration r(t)
 - Define the residual distance:

$$r_{res} = r_{track} - r_{iso}$$

2. Track reconstruction using χ 2- MINUIT fit to isochrones

$$\frac{\chi^2}{ndf} = \left(\frac{1}{n_{hits} - 2}\right) \sum_{n=1}^{n_{hits}} \frac{r_{res(nhits)}^2}{\sigma_{err(nhits)}^2}$$

- n_{hits} , total number of hits
- σ_{err} , uncertainty of the measurement in a straw in the radial direction
- 2 are the parameters to be minimized
- 3. Iterative process to find better track parameters, *i.e.* Minimize χ 2.
- 4. Outliers elimination rejection at each step.

TRACKING

- Obtain residual distribution: 4.
 - Ideally $r_{res} = 0$ •
 - Expected r_{res} values distributed around $r_{res} = 0$
- 5. Non-negligible shifts in r_{res} distribution
- 6. Find r_{mean} from fitted Gaussian to distribution.
- 7. Perform r(t) correction:

 $r_{new} = r_{iso} + r_{mean}$

- For above/below wire cases
- *r_{mean}* value is channel specific
- Perform iteration process with r_{new} curve 4.
- \Box Uncorrected : mean = $-58\mu m$, $\sigma = 187 \mu m$
- \Box Corrected : mean = $-1 \mu m$, $\sigma = 135 \mu m$

Channel no.

uncorrected Channel vs Residuals (above wire)

corrected

Page 8

Residuals (mm)

TESTBEAMS

Results

- Spatial resolution defined with σ value from residuals
 - 100-125 μm (design goal = 150 μm)

Current calibration and tracking methods are beam specific

NEXT STEPS

- Optimization of the time calibration, TOT calibration and tracking methods
- Investigate influence of dE/dx in isochrones calibration and tracking methods
- Determine which PID observable is the best
- Preparation of calibration and tracking with STS1 (HADES)
- Cosmic tests in Jülich foreseen for summer

THANK YOU!

Questions?

Member of the Helmholtz Association

26 June 2019

Page 11

PID

- 1. Shifted raw *ToT* channel distributions before t0 offset correction.
- 2. *ToT* is drift time dependent $(1/\beta^2)$, characterized by

$$ToT(t_{drift}) = \sum_{i=0}^{4} P_i \times t_{drift}^i$$
$$ToT(t_{drift} = 0) = ToT_{mean}$$

3. Truncate mean (~ 30 % highest hits) at each ToT distribution

$$ToT(t_{drift} = 0) = ToT_{trunc\ mean}$$

• Method needs t0 determination.

PID

- 4. Consider ToT/dx as PID observable.
- 5. Perform mean truncation (~ 30 % highest hits)
 - ToT/dx values distributed ~ constant over r = 0 4 mm
 - No need of t0 determination.
 - dx obtained by coarse tracking

Both PID variables (ToT and ToT/dx) are dE/dx dependent

TESTBEAMS

Results

- Spatial resolution defined with σ value from residuals
 - 100-125 μm (design goal = 150 μm)
- Separation power (PID)

$$S = \frac{\langle M_1 \rangle - \langle M_2 \rangle}{(\sigma_1 + \sigma_2)/2}$$

Where $\langle M_i \rangle = \langle ToT_i \rangle$ or $\langle ToT/dx_i \rangle$

- i = 1, from chosen particle/momenta
- i = 2, reference from M.I.P. (2.5 *GeV/c protons*)
- $1/\beta^2$ dependence
- S ~ 4 12 in momentum range p < 1 GeV/c

Current calibration, tracking and PID methods are beam specific

FIGURE 6.1: The schematic representation of the detector modules placement during the proton beam tests.

