
STT CALIBRATION AND TRACKING

26.06.2019  I  GABRIELA PÉREZ ANDRADE

PANDA COLLABORATION MEETING 



OVERVIEW

• The PANDA STT

• The HADES STS

• Testbeams at COSY

• Raw data & calibration

• Tracking 

• Next steps
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THE PANDA STT
Straws design
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• 4224 straws in 19 axial and 8 stereo (±3°) layers

• 27µm Al-Mylar film, 1400 mm length, 10 mm diameter

• Ar/CO2 gas mixture at 1 bar overpressure

• Continuous data stream readout (~ 15GB/s)

• Charged particles will describe helical trajectories
Figure. Straws components.

Figure. Electrons drift from particles 
path through the straw

Detection method

• Charged particles traversing straws ionize gas molecules.

• Due to voltage difference between tube and wire, 𝑒− drift towards wire

• Shortest distance from particle track to wire provided by earliest 𝑒− to arrive.

• Drift time and charge readout used for tracking and PID (dE/dx)

Figures. PANDA-STT layout
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THE HADES STS

• Straws detection principles same as PANDA 

STT

• No magnetic field at forward detector

• Triggered data tacking

• Forward Straw Tracker Stations :

• STS1 (Jülich, assembly currently ongoing): 

• 640 channels, 20 modules

• Double layers with: 90°,0°, 0°, 90°

• STS2 (Krakow): 

• 896 channels, 28 modules 

• Double layers with: 0°, 90°, 45°, 45°

• Straw modules to be used in PANDA-FTS
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For HADES upgrade (FAIR Phase 0)
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Figure. Example of straws arrangement (FT 

and STS case).



TESTBEAMS AT COSY (2016 & 2018)
Protons and Deuterons
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• Momentum range: 0.5 - 3.0 GeV/c (~ 1 – 10 × MIP)

• Setups with 24 straws per layer:

• Particle tracks with > 24 hits simmilar to PANDA 

STT case

• Ar/CO2 gas mixture 

• Data in analysis stage.

Figures. One of the two straw test systems. 

Current analysis addressing:

• Raw data calibration

• Tracking

• PID

For each beam case. 
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Straw signals (in-beam)

One of the two straw test systems. Beam 
enters from the right.



𝐓𝐨𝐓

𝐓𝐨𝐓

• Raw data: Signal times (𝑡𝐿𝐸 , 𝑡𝑇𝐸) and Channel number (𝑖𝑐ℎ𝑎𝑛 )

• Signal pulse width gives 𝑇𝑜𝑇 = 𝑡𝐿𝐸 − 𝑡𝑇𝐸

• From individual channel 𝑡𝐿𝐸 time distribution:

• Minimum (𝑡0) from track close to wire

• Specific channel 𝑡0 offset correction

• Maximum (𝑡𝑚𝑎𝑥)  from track close to the cathode wall

• Drift time spectra obtained by substracting 𝑡0 from raw 𝑡𝐿𝐸

• Radial distance from particle‘s path to wire (isochrone radii) 

parametrized as a polynomial function of the drift times:

𝑟 𝑡 = ෍𝑃𝑖 × 𝑡𝑖

CALIBRATION
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All channels drift time (ns) 

𝒓(𝒕) = σ𝒊=𝟎
𝟒 𝑷𝒊 × 𝒕𝒊

Single channel drift time (ns) 

Projection
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TRACKING
1. Pre-fit parameters: Position of fired wires

• Obtain 𝑟𝑖𝑠𝑜 for each hit contained in the 

event with calibration 𝑟(𝑡)

• Define the residual distance: 

𝑟𝑟𝑒𝑠 = 𝑟𝑡𝑟𝑎𝑐𝑘 − 𝑟𝑖𝑠𝑜

2. Track reconstruction using 2- MINUIT fit 

to isochrones

𝜒2

𝑛𝑑𝑓
=

1

𝑛ℎ𝑖𝑡𝑠 − 2
෍

𝑛=1

𝑛ℎ𝑖𝑡𝑠 𝑟𝑟𝑒𝑠(𝑛ℎ𝑖𝑡𝑠)
2

𝜎𝑒𝑟𝑟(𝑛ℎ𝑖𝑡𝑠)
2

• 𝑛ℎ𝑖𝑡𝑠 , total number of hits

• 𝜎𝑒𝑟𝑟 , uncertainty of the measurement in a 

straw in the radial direction

• 2 are the parameters to be minimized

3. Iterative process to find better track 

parameters, i.e. Minimize 2.

4. Outliers elimination rejection at each step.
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Figure. Track reconstruction 

(testbeam data) 

Beam

Hit map

isochrone

Trackfit ( true track)

wire

𝑟𝑖𝑠𝑜

𝑟𝑡𝑟𝑎𝑐𝑘
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TRACKING

4. Obtain residual distribution:

• Ideally 𝑟𝑟𝑒𝑠 = 0

• Expected 𝑟𝑟𝑒𝑠 values distributed around 

𝑟𝑟𝑒𝑠 = 0 

5. Non-negligible shifts in 𝑟𝑟𝑒𝑠 distribution

6. Find 𝑟𝑚𝑒𝑎𝑛 from fitted Gaussian to 

distribution.

7. Perform 𝑟(𝑡) correction:

𝑟𝑛𝑒𝑤 = 𝑟𝑖𝑠𝑜 + 𝑟𝑚𝑒𝑎𝑛

• For above/below wire cases

• 𝑟𝑚𝑒𝑎𝑛 value is channel specific

4. Perform iteration process with 𝑟𝑛𝑒𝑤curve

 Uncorrected : mean = −58𝜇𝑚, 𝜎 = 187 𝜇𝑚

 Corrected : mean = −1 𝜇𝑚, 𝜎 = 135 𝜇𝑚
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• Spatial resolution defined with 𝜎 value from residuals

• 100-125 µm  (design goal = 150 µm)

Current calibration and tracking methods are beam specific

TESTBEAMS 
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Results
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P. Wintz (FZJ)

p / Mc

 Deuteron beam

 Proton beam

 Proton, higher ASIC thresh

Design goal



NEXT STEPS

• Optimization of the time calibration, TOT calibration and tracking methods 

• Investigate influence of dE/dx in isochrones calibration and tracking methods 

• Determine which PID observable is the best

• Preparation of calibration and tracking with STS1 (HADES)

• Cosmic tests in Jülich foreseen for summer
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THANK YOU!
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Questions?
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PID
1. Shifted raw 𝑇𝑜𝑇channel distributions before t0 offset 

correction. 

2. 𝑇𝑜𝑇 is drift time dependent (1/𝛽2), characterized by

𝑇𝑜𝑇 𝑡𝑑𝑟𝑖𝑓𝑡 = ෍

𝑖=0

4

𝑃𝑖 × 𝑡𝑑𝑟𝑖𝑓𝑡
𝑖

𝑇𝑜𝑇 𝑡𝑑𝑟𝑖𝑓𝑡 = 0 = 𝑇𝑜𝑇𝑚𝑒𝑎𝑛

3. Truncate mean (~ 30 % highest hits) at each 𝑇𝑜𝑇

distribution

𝑇𝑜𝑇 𝑡𝑑𝑟𝑖𝑓𝑡 = 0 = 𝑇𝑜𝑇𝑡𝑟𝑢𝑛𝑐 𝑚𝑒𝑎𝑛

• Method needs t0 determination.
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Figure. 𝑻𝒐𝑻 raw data (ns) (All channels) 
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PID
4. Consider 𝑇𝑜𝑇/𝑑𝑥 as PID observable.

5. Perform mean truncation (~ 30 % highest hits) 

• 𝑇𝑜𝑇/𝑑𝑥 values distributed ~ constant over r = 0 – 4 mm

• No need of t0 determination.

• 𝑑𝑥 obtained by coarse tracking

Both PID variables (𝑇𝑜𝑇 and 𝑇𝑜𝑇/𝑑𝑥) are dE/𝑑𝑥 dependent 
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• Spatial resolution defined with 𝜎 value from residuals

• 100-125 µm  (design goal = 150 µm)

• Separation power (PID)

𝑆 =
𝑀1 − 𝑀2

(𝜎1+𝜎2)/2

Where 𝑀𝑖 = 𝑇𝑜𝑇i or 𝑇𝑜𝑇/𝑑𝑥𝑖

𝑖 = 1, from chosen particle/momenta

𝑖 = 2, reference from M.I.P. (2.5 𝐺𝑒𝑉∕𝑐 𝑝𝑟𝑜𝑡𝑜𝑛𝑠)

• 1/𝛽2 dependence

• S ~ 4 - 12 in momentum range p < 1 GeV/c

Current calibration, tracking and PID methods are 

beam specific

TESTBEAMS 
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Results
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P. Wintz (FZJ)

p / Mc

 Deuteron beam

 Proton beam

 Proton, higher ASIC thresh

p / Mc

 ToT/dx 

 ToT drift time corr.
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P. Wintz (FZJ)
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